A249155 Palindromic in bases 6 and 15.
0, 1, 2, 3, 4, 5, 7, 14, 80, 160, 301, 602, 693, 994, 1295, 1627, 1777, 2365, 2666, 5296, 5776, 6256, 17360, 34720, 51301, 52201, 105092, 155493, 209284, 587846, 735644, 7904800, 11495701, 80005507, 80469907, 83165017, 89731777, 90196177
Offset: 1
Examples
301 is a term since 301 = 1221 base 6 and 301 = 151 base 15.
Links
- Ray Chandler and Chai Wah Wu, Table of n, a(n) for n = 1..71 (terms < 6^28). First 65 terms from Ray Chandler.
- Attila Bérczes and Volker Ziegler, On Simultaneous Palindromes, arXiv:1403.0787 [math.NT], 2014.
Programs
-
Mathematica
palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; Select[Range[10^6] - 1, palQ[#, 6] && palQ[#, 15] &]
-
Python
from gmpy2 import digits def palQ(n, b): # check if n is a palindrome in base b s = digits(n, b) return s == s[::-1] def palQgen(l, b): # generator of palindromes in base b of length <= 2*l if l > 0: yield 0 for x in range(1, l+1): for y in range(b**(x-1), b**x): s = digits(y, b) yield int(s+s[-2::-1], b) for y in range(b**(x-1), b**x): s = digits(y, b) yield int(s+s[::-1], b) A249155_list = [n for n in palQgen(8, 6) if palQ(n, 15)] # Chai Wah Wu, Nov 29 2014
Comments