A249156 Palindromic in bases 5 and 7.
0, 1, 2, 3, 4, 6, 24, 57, 78, 114, 342, 624, 856, 1432, 10308, 12654, 27616, 100056, 537856, 593836, 769621, 1434168, 1473368, 1636104, 1823544, 1862744, 17968646, 18108296, 22412057, 34713713, 34853363, 39280254, 159690408, 663706192
Offset: 1
Examples
114 is a term since 114 = 424 base 5 and 114 = 222 base 7.
Links
- G. Resta, Table of n, a(n) for n = 1..72 (first 60 terms from Ray Chandler)
- Attila Bérczes and Volker Ziegler, On Simultaneous Palindromes, arXiv:1403.0787 [math.NT], 2014.
Programs
-
Mathematica
palQ[n_Integer,base_Integer]:=Block[{idn=IntegerDigits[n,base]},idn==Reverse[idn]];Select[Range[10^6]-1,palQ[#,5]&&palQ[#,7]&]
-
PARI
isok(n) = my(df = digits(n, 5), ds = digits(n, 7)); (Vecrev(df)==df) && (Vecrev(ds)==ds); \\ Michel Marcus, Oct 31 2017
-
Python
from gmpy2 import digits def palQ(n,b): # check if n is a palindrome in base b s = digits(n,b) return s == s[::-1] def palQgen(l,b): # unordered generator of palindromes in base b of length <= 2*l if l > 0: yield 0 for x in range(1,b**l): s = digits(x,b) yield int(s+s[-2::-1],b) yield int(s+s[::-1],b) A249156_list = sorted([n for n in palQgen(8,5) if palQ(n,7)]) # Chai Wah Wu, Nov 25 2014
Comments