A249190 Number of length n+6 0..1 arrays with no seven consecutive terms having four times the sum of any three elements equal to three times the sum of the remaining four.
126, 250, 496, 984, 1952, 3872, 7680, 15234, 30218, 59940, 118896, 235840, 467808, 927936, 1840638, 3651058, 7242176, 14365456, 28495072, 56522336, 112116736, 222392834, 441134610, 875027044, 1735688632, 3442882192, 6829242048
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....1....0....1....1....1....0....0....0....0....1....1....0....0....0 ..1....1....0....1....1....1....1....0....0....1....1....0....1....1....1....0 ..0....0....0....1....1....0....0....1....1....0....1....1....1....0....1....1 ..1....0....0....1....0....1....1....0....0....1....1....1....1....0....1....1 ..0....1....1....0....0....1....0....1....1....0....1....0....1....1....1....0 ..0....1....0....0....1....1....1....0....0....0....0....1....1....0....1....1 ..0....1....1....0....1....1....0....1....1....0....0....0....0....0....0....1 ..1....1....0....1....0....1....1....1....0....0....0....1....1....0....1....1 ..1....0....0....1....1....0....0....1....0....1....1....0....1....0....1....0 ..0....0....0....1....0....0....1....0....0....1....1....1....1....0....0....1 ..0....1....0....1....1....0....0....1....1....1....1....0....1....1....0....0 ..1....0....1....1....1....1....0....1....0....0....0....0....0....0....0....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A249197.
Formula
Empirical: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6).
Empirical g.f.: 2*x*(63 + 62*x + 60*x^2 + 56*x^3 + 48*x^4 + 32*x^5) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6). - Colin Barker, Feb 24 2018
Comments