cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249270 Decimal expansion of lim_{n->oo} (1/n)*Sum_{k=1..n} smallest prime not dividing k.

Original entry on oeis.org

2, 9, 2, 0, 0, 5, 0, 9, 7, 7, 3, 1, 6, 1, 3, 4, 7, 1, 2, 0, 9, 2, 5, 6, 2, 9, 1, 7, 1, 1, 2, 0, 1, 9, 4, 6, 8, 0, 0, 2, 7, 2, 7, 8, 9, 9, 3, 2, 1, 4, 2, 6, 7, 1, 9, 7, 7, 2, 6, 8, 2, 5, 3, 3, 1, 0, 7, 7, 3, 3, 7, 7, 2, 1, 2, 7, 7, 6, 6, 1, 2, 4, 1, 9, 0, 1, 7, 8, 1, 1, 2, 3, 1, 7, 5, 8, 3, 7, 4, 2, 2, 9, 8, 3
Offset: 1

Views

Author

Jean-François Alcover, Oct 24 2014

Keywords

Comments

The old definition was "Decimal expansion of the mean value over all positive integers of the least prime not dividing a given integer."
The integer parts of the sequence having this constant as starting value and thereafter x[n+1] = (frac(x[n])+1)*floor(x[n]), where floor and frac are integer and fractional part, are exactly the sequence of the prime numbers: see the Grime-Haran Numberphile video for details. - M. F. Hasler, Nov 28 2020

Examples

			2.9200509773161347120925629171120194680027278993214267...
		

References

  • Steven R. Finch, Meissel-Mertens constants: Quadratic residues, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 96—98.

Crossrefs

Programs

  • Mathematica
    digits = 103; Clear[s]; s[m_] := s[m] = Sum[(Prime[k] - 1)/Product[Prime[j], {j, 1, k - 1}] // N[#, digits + 100]&, {k, 1, m}]; s[10]; s[m = 20]; While[RealDigits[s[m]] != RealDigits[s[m/2]], m = 2*m]; RealDigits[s[m], 10, digits] // First
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n));
    @CachedFunction
    def spv(n):
        b = 0
        for i in (0..n):
            b += 1 / sharp_primorial(i)
        return b
    N(spv(300), digits=108) # Jani Melik, Jul 22 2015

Formula

Sum_{k >= 1} (p_k - 1)/(p_1 p_2 ... p_{k-1}), where p_k is the k-th prime number.
Sum_{k >= 0} 1/A034386(k). - Jani Melik, Jul 22 2015
From Amiram Eldar, Oct 29 2020: (Start)
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} A053669(k).
Equals 2 + Sum_{n>=1} (prime(n+1)-prime(n))/prime(n)# = 2 + Sum_{n>=1} A001223(n)/A002110(n). (End)
prime(n+1) = floor(C*prime(n)# - prime(n)*floor(C*prime(n-1)# - 1)) with prime(1)=2 where C is this constant. - Davide Rotondo, Sep 15 2023

Extensions

Definition revised by N. J. A. Sloane, Nov 29 2020