A249270 Decimal expansion of lim_{n->oo} (1/n)*Sum_{k=1..n} smallest prime not dividing k.
2, 9, 2, 0, 0, 5, 0, 9, 7, 7, 3, 1, 6, 1, 3, 4, 7, 1, 2, 0, 9, 2, 5, 6, 2, 9, 1, 7, 1, 1, 2, 0, 1, 9, 4, 6, 8, 0, 0, 2, 7, 2, 7, 8, 9, 9, 3, 2, 1, 4, 2, 6, 7, 1, 9, 7, 7, 2, 6, 8, 2, 5, 3, 3, 1, 0, 7, 7, 3, 3, 7, 7, 2, 1, 2, 7, 7, 6, 6, 1, 2, 4, 1, 9, 0, 1, 7, 8, 1, 1, 2, 3, 1, 7, 5, 8, 3, 7, 4, 2, 2, 9, 8, 3
Offset: 1
Examples
2.9200509773161347120925629171120194680027278993214267...
References
- Steven R. Finch, Meissel-Mertens constants: Quadratic residues, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 96—98.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Average least nonresidues, December 4, 2013. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 171.
- Dylan Fridman, Juli Garbulsky, Bruno Glecer, James Grime and Massi Tron Florentin, A Prime-Representing Constant, The American Mathematical Monthly, Vol. 126, No. 1 (2019), pp. 70-73, ResearchGate link.
- James Grime and Brady Haran, 2.920050977316, Numberphile video, Nov 26 2020.
- Paul Pollack, The average least quadratic nonresidue modulo m and other variations on a theme of Erdős, J. Number Theory, Vol. 132, No. 6 (2012), pp. 1185-1202.
- Juan L. Varona, A Couple of Transcendental Prime-Representing Constants, arXiv:2012.11750 [math.NT], 2020.
- I. A. Weinstein, Family of prime-representing constants: use of the ceiling function, arXiv:2101.00094 [math.GM], 2021.
Programs
-
Mathematica
digits = 103; Clear[s]; s[m_] := s[m] = Sum[(Prime[k] - 1)/Product[Prime[j], {j, 1, k - 1}] // N[#, digits + 100]&, {k, 1, m}]; s[10]; s[m = 20]; While[RealDigits[s[m]] != RealDigits[s[m/2]], m = 2*m]; RealDigits[s[m], 10, digits] // First
-
Sage
def sharp_primorial(n): return sloane.A002110(prime_pi(n)); @CachedFunction def spv(n): b = 0 for i in (0..n): b += 1 / sharp_primorial(i) return b N(spv(300), digits=108) # Jani Melik, Jul 22 2015
Formula
Sum_{k >= 1} (p_k - 1)/(p_1 p_2 ... p_{k-1}), where p_k is the k-th prime number.
Sum_{k >= 0} 1/A034386(k). - Jani Melik, Jul 22 2015
From Amiram Eldar, Oct 29 2020: (Start)
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} A053669(k).
prime(n+1) = floor(C*prime(n)# - prime(n)*floor(C*prime(n-1)# - 1)) with prime(1)=2 where C is this constant. - Davide Rotondo, Sep 15 2023
Extensions
Definition revised by N. J. A. Sloane, Nov 29 2020
Comments