cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249410 Primes p such that sigma(p-1) is odd.

Original entry on oeis.org

2, 3, 5, 17, 19, 37, 73, 101, 163, 197, 257, 401, 577, 677, 883, 1153, 1297, 1459, 1601, 1801, 2179, 2593, 2917, 3137, 3529, 4051, 4357, 5477, 7057, 8101, 8713, 8837, 10369, 11251, 12101, 13457, 14401, 15139, 15377, 15877, 16901, 17299, 17957, 18433, 19603
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 27 2014

Keywords

Comments

Subsequence of A058501.
Union of A002496 and A090698. - Ivan Neretin, Dec 04 2018
Except for the terms 2 and 3, union of the primes of the form 4*k^2 + 1 and the primes of the form 18*k^2 + 1. - Jianing Song, Nov 14 2021

Examples

			2 is in this sequence because 2 is prime and sigma(2-1) = 1 is odd.
		

Crossrefs

Programs

  • GAP
    Filtered(Filtered([1..25000],i->IsPrime(i)),p->IsOddInt(Sigma(p-1))); # Muniru A Asiru, Dec 05 2018
  • Mathematica
    Select[Range[20000], PrimeQ[#] && OddQ[DivisorSigma[1, #-1]] &] (* Amiram Eldar, Dec 04 2018 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (sigma(p-1) % 2, print1(p, ", ")););} \\ Michel Marcus, Oct 30 2014
    
  • PARI
    list(lim)=my(v=List([2]),t); forstep(n=2,sqrt(lim),2, if(isprime(t=n^2+1), listput(v,t))); for(n=1,sqrtint(lim\2), if(isprime(t=2*n^2+1), listput(v,t))); Set(v) \\ Charles R Greathouse IV, Nov 04 2014
    

Extensions

More terms from Michel Marcus, Oct 30 2014