cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A249442 a(n) is the smallest m such that binomial(n,m) is not squarefree, or a(n)=0, if there is no such m.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 0, 1, 1, 2, 0, 1, 5, 3, 7, 1, 2, 1, 2, 1, 4, 3, 0, 1, 1, 2, 1, 1, 3, 3, 5, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 8, 1, 1, 2, 21, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 3, 6, 1, 6, 3, 1, 1, 2, 3, 4, 1, 6, 3, 8, 1, 2, 3, 1, 1, 3, 3, 8, 1, 1, 2, 3, 1, 5, 3
Offset: 0

Views

Author

Keywords

Comments

The sequence gives the position of the first zero on row n (both starting from zero) in the triangular table A103447, and zero if there is no zero on that row. After a(0) = 0, A048278 gives the positions of seven other zeros in the sequence.
Records are 0,1,3,5,7,8,21,... (A249439) in positions 0,4,6,13,15,43,47,... (A249440).

Crossrefs

A249439 gives the record values, A249440 the positions where they occur for the first time.
Differs from A249695 for the first time at n=9.

Programs

  • Mathematica
    Table[If[#>n,0,#]&[NestWhile[#+1&,1,SquareFreeQ[Binomial[n,#]]&]],{n,0,100}] (* Peter J. C. Moses, Nov 04 2014 *)
  • PARI
    A249442(n) = { for(k=0,n\2,if(0==moebius(binomial(n,k)),return(k))); return(0); }
    for(n=0, 10000, write("b249442.txt", n, " ", A249442(n)));
    \\ Antti Karttunen, Nov 04 2014

Formula

Other identities:
A249716(n) = binomial(n, a(n)). [A249716(n) gives the corresponding minimal nonsquarefree binomial coefficient, or 1 when n is one of the terms of A048278].

Extensions

More terms from Peter J. C. Moses, Oct 28 2014

A249439 Record values in A249442.

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 21, 24, 32, 36, 40, 45, 48, 64, 91, 94
Offset: 1

Views

Author

Keywords

Crossrefs

A249440 gives the positions where these values occur in A249442 for the first time.

Programs

  • PARI
    A249442(n) = { for(k=0,n\2,if(0==moebius(binomial(n,k)),return(k))); return(0); }
    prevmax = -1; i = 0; for(n=0, 123456789, if((k=A249442(n)) > prevmax, prevmax = k; i++; write("b249439.txt", i, " ", k); write("b249440.txt", i, " ", n)));
    \\ Compute both A249439 and A249440 at the same time. - Antti Karttunen, Nov 04 2014

Formula

a(n) = A249442(A249440(n)).

A249715 Positions of records in A249695.

Original entry on oeis.org

0, 4, 6, 13, 15, 27, 47, 55, 111, 223, 447, 895, 1791, 3583, 7167, 14335, 28671, 57343, 114687, 229375, 458751, 917503, 1835007, 3670015, 7340031, 14680063, 29360127, 58720255, 117440511
Offset: 1

Views

Author

Keywords

Comments

From n=8 [a(8)=55] onward, the terms seem to be given by A086224(n-5), i.e. as (7 * 2^(n-5)) - 1.

Crossrefs

A249714 gives the corresponding record values.

A249149 One more than positions of records in A249442.

Original entry on oeis.org

1, 5, 7, 14, 16, 44, 48, 240, 7200, 16560, 21600, 33120, 45360, 60480, 90720, 1179360
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2014

Keywords

Comments

After 1, these terms factorize as: 5, 7, 2 * 7, 2^4, 2^2 * 11, 2^4 * 3, 2^4 * 3 * 5, 2^5 * 3^2 * 5^2, 2^4 * 3^2 * 5 * 23, 2^5 * 3^3 * 5^2, 2^5 * 3^2 * 5 * 23, 2^4 * 3^4 * 5 * 7, 2^6 * 3^3 * 5 * 7, 2^5 * 3^4 * 5 * 7, 2^5 * 3^4 * 5 * 7 * 13, ...

Crossrefs

One more than A249440.

Formula

a(n) = A249440(n)+1.
Showing 1-4 of 4 results.