A249448 Largest n-digit prime whose digit sum is also prime.
7, 89, 991, 9967, 99991, 999983, 9999971, 99999989, 999999937, 9999999943, 99999999821, 999999999989, 9999999999971, 99999999999923, 999999999999883, 9999999999999851, 99999999999999997, 999999999999999967, 9999999999999999919, 99999999999999999989, 999999999999999999829
Offset: 1
Examples
a(1) = 7 because it is the largest prime with just one digit. a(2) = 89 because it is the largest prime with 2 digits whose sum, 8 + 9 = 17, is a prime. Again, a(7) = 9999971 because it is the largest prime with 7 digits whose sum is a prime: 9 + 9 + 9 + 9 + 9 + 7 + 1 = 53.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
P:=proc(q) local a,b,k,n; for k from 0 to q do for n from 10^(k+1)-1 by -1 to 10^k do if isprime(n) then a:=n; b:=0; while a>0 do b:=b+(a mod 10); a:=trunc(a/10); od; if isprime(b) then print(n); break; fi; fi; od; od; end: P(10^3);
-
Mathematica
Table[Module[{p=NextPrime[10^n,-1]},While[!PrimeQ[Total[IntegerDigits[p]]],p=NextPrime[p,-1]];p],{n,25}] (* Harvey P. Dale, Jun 20 2023 *)
-
PARI
a(n) = {p = precprime(10^n); while (!isprime(sumdigits(p)), p = precprime(p-1)); p;} \\ Michel Marcus, Oct 29 2014
Comments