A249458 The numerators of curvatures of touching circles inscribed in a special way in the smaller segment of unit circle divided by a chord of length sqrt(84)/5.
10, 100, 1690, 36100, 835210, 19802500, 472931290, 11318832100, 271066588810, 6492762648100, 155527144782490, 3725543446072900, 89243180863948810, 2137770243127864900, 51209104645650371290, 1226685938180259902500
Offset: 0
Links
- Kival Ngaokrajang, Illustration of initial terms.
- Eric Weisstein's World of Mathematics, Sagitta.
- Index entries for linear recurrences with constant coefficients, signature (33,-231,343).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Magma
I:=[10, 100, 1690]; [n le 3 select I[n] else 33*Self(n-1) - 231*Self(n-2) + 343*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
Mathematica
LinearRecurrence[{33, -231, 343},{10, 100, 1690},16] (* Ray Chandler, Aug 11 2015 *) CoefficientList[Series[10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
-
PARI
{ r=0.3;dn=3;print1(round(dn/r),", ");r1=r; for (n=1,40, if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2)); ac=sqrt(ab^2-r^2); if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r); b=acos(r/ab)-z; r=r*(1-cos(b))/(1+cos(b)); dn=dn*7; print1(round(dn/r),", "); ) }
-
PARI
x='x+O('x^30); Vec(10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x))) \\ G. C. Greubel, Dec 20 2017
Formula
Empirical g.f.: -10*(70*x^2-23*x+1) / ((7*x-1)*(49*x^2-26*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 09 2014 (Start)
a(n) = 5*(A249864(n) + 7^n) = (5*7^n)*(S(n, 26/7) - (13/7)*S(n-1, 26/7) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249864 for the proof.
O.g.f.: 5*((1 - 13*x)/(1 - 26*x + (7*x)^2) + 1/(1-7*x)) = 10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)) proving the conjecture of Colin Barker above. (End)
Extensions
Edited. In name and comment small changes, keyword easy and crossrefs added. - Wolfdieter Lang, Nov 08 2014
Comments