A249474 E.g.f.: P(x)/exp(1) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} -(-1)^n / Product_{k=1..n} (k - x^k).
1, 1, 2, 7, 30, 169, 1128, 8700, 76494, 753139, 8182188, 97131376, 1256860330, 17470791933, 261284377168, 4164406202270, 70677340199670, 1268718107324255, 24091289738163140, 480954355282406340, 10097484764045220626, 221918808641500960217, 5103937368681669463800
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 30*x^4/4! + 169*x^5/5! +... such that A(x) = exp(-1)*P(x) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and Q(x) = Sum_{n>=1} -(-1)^n / Product_{k=1..n} (k - x^k). More explicitly, P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...); Q(x) = 1/(1-x) - 1/((1-x)*(2-x^2)) + 1/((1-x)*(2-x^2)*(3-x^3)) - 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +-... We can illustrate the initial terms a(n) in the following manner. The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin: q(0) = 0.632120558828557678... q(1) = 0.632120558828557678... q(2) = 0.896361676485673035... q(3) = 2.953326147114134462... q(4) = 9.398751294399229990... q(5) = 49.80706106045268780... q(6) = 273.0481787175680446... q(7) = 1956.034084445119360... q(8) = 14858.00690837186767... q(9) = 137211.6953065362928... and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin: A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...]; from which we can generate this sequence like so: a(0) = exp(-1)*1 + q(0) = 1; a(1) = exp(-1)*1 + q(1) = 1; a(2) = exp(-1)*3 + q(2) = 2; a(3) = exp(-1)*11 + q(3) = 7; a(4) = exp(-1)*56 + q(4) = 30; a(5) = exp(-1)*324 + q(5) = 169; a(6) = exp(-1)*2324 + q(6) = 1128; a(7) = exp(-1)*18332 + q(7) = 8700; a(8) = exp(-1)*167544 + q(8) = 76494; ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..200
Programs
-
PARI
\p100 \\ set precision {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841 {Q=Vec(serlaplace(sum(n=1, 201, -(-1)^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); } for(n=0, 30, print1(round(exp(-1)*P[n+1]+Q[n+1]), ", "))
Comments