A249491 Decimal expansion of the expected product of two sides of a random Gaussian triangle (in two dimensions).
3, 3, 4, 1, 2, 2, 3, 3, 0, 5, 1, 3, 8, 8, 1, 4, 5, 5, 7, 5, 3, 2, 3, 7, 5, 5, 8, 1, 2, 6, 5, 0, 4, 9, 0, 5, 9, 8, 5, 0, 2, 4, 5, 6, 6, 8, 0, 9, 7, 2, 9, 4, 2, 7, 5, 8, 2, 3, 2, 4, 0, 0, 9, 9, 1, 2, 3, 1, 4, 6, 3, 5, 4, 7, 6, 1, 6, 4, 2, 4, 0, 2, 0, 0, 6, 4, 7, 7, 6, 6, 2, 0, 2, 9, 0, 9, 9, 5, 5, 3, 2, 2, 6, 5
Offset: 1
Examples
3.341223305138814557532375581265049059850245668...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Steven R. Finch, Random Triangles, Jan 21 2010. [Cached copy, with permission of the author]
- Eric Weisstein's World of Mathematics, Gaussian Triangle Picking
Programs
-
Maple
Re(evalf(4*EllipticE(1/2)-sqrt(3)*EllipticK(I/sqrt(3)), 120)); # Vaclav Kotesovec, Apr 22 2015
-
Mathematica
ek[x_] := EllipticK[x^2/(-1 + x^2)]/Sqrt[1 - x^2]; ee[x_] := EllipticE[x^2]; p = 4*ee[1/2] - (3/2)*ek[1/2]; (* or *) p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; RealDigits[p, 10, 104] // First RealDigits[ N[ EllipticE[-8], 102]][[1]] (* Altug Alkan, Oct 02 2018 *) RealDigits[3 EllipticE[8/9], 10, 102][[1]] (* Jan Mangaldan, Nov 24 2020 *)
-
PARI
magm(a,b)=my(eps=10^-(default(realprecision)-5), c); while(abs(a-b)>eps, my(z=sqrt((a-c)*(b-c))); [a,b,c] = [(a+b)/2,c+z,c-z]); (a+b)/2 E(x)=Pi/2/agm(1,sqrt(1-x))*magm(1,1-x) K(x)=Pi/2/agm(1,sqrt(1-x)) 4*E(1/4) - sqrt(3)*K(-1/3) \\ Charles R Greathouse IV, Aug 02 2018
Formula
p = 4*E(1/4) - sqrt(3)*K(-1/3), where E is the complete elliptic integral and K the complete elliptic integral of the first kind.
Equals A093728/2. - Altug Alkan, Oct 02 2018
Comments