cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249491 Decimal expansion of the expected product of two sides of a random Gaussian triangle (in two dimensions).

Original entry on oeis.org

3, 3, 4, 1, 2, 2, 3, 3, 0, 5, 1, 3, 8, 8, 1, 4, 5, 5, 7, 5, 3, 2, 3, 7, 5, 5, 8, 1, 2, 6, 5, 0, 4, 9, 0, 5, 9, 8, 5, 0, 2, 4, 5, 6, 6, 8, 0, 9, 7, 2, 9, 4, 2, 7, 5, 8, 2, 3, 2, 4, 0, 0, 9, 9, 1, 2, 3, 1, 4, 6, 3, 5, 4, 7, 6, 1, 6, 4, 2, 4, 0, 2, 0, 0, 6, 4, 7, 7, 6, 6, 2, 0, 2, 9, 0, 9, 9, 5, 5, 3, 2, 2, 6, 5
Offset: 1

Views

Author

Jean-François Alcover, Oct 30 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			3.341223305138814557532375581265049059850245668...
		

Crossrefs

Programs

  • Maple
    Re(evalf(4*EllipticE(1/2)-sqrt(3)*EllipticK(I/sqrt(3)), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    ek[x_] := EllipticK[x^2/(-1 + x^2)]/Sqrt[1 - x^2]; ee[x_] := EllipticE[x^2]; p = 4*ee[1/2] - (3/2)*ek[1/2]; (* or *) p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; RealDigits[p, 10, 104] // First
    RealDigits[ N[ EllipticE[-8], 102]][[1]] (* Altug Alkan, Oct 02 2018 *)
    RealDigits[3 EllipticE[8/9], 10, 102][[1]] (* Jan Mangaldan, Nov 24 2020 *)
  • PARI
    magm(a,b)=my(eps=10^-(default(realprecision)-5), c); while(abs(a-b)>eps, my(z=sqrt((a-c)*(b-c))); [a,b,c] = [(a+b)/2,c+z,c-z]); (a+b)/2
    E(x)=Pi/2/agm(1,sqrt(1-x))*magm(1,1-x)
    K(x)=Pi/2/agm(1,sqrt(1-x))
    4*E(1/4) - sqrt(3)*K(-1/3) \\ Charles R Greathouse IV, Aug 02 2018

Formula

p = 4*E(1/4) - sqrt(3)*K(-1/3), where E is the complete elliptic integral and K the complete elliptic integral of the first kind.
Equals A093728/2. - Altug Alkan, Oct 02 2018