cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A093728 Decimal expansion of 2E(2i sqrt(2)), where E(k) is the complete elliptic integral of the 2nd kind.

Original entry on oeis.org

6, 6, 8, 2, 4, 4, 6, 6, 1, 0, 2, 7, 7, 6, 2, 9, 1, 1, 5, 0, 6, 4, 7, 5, 1, 1, 6, 2, 5, 3, 0, 0, 9, 8, 1, 1, 9, 7, 0, 0, 4, 9, 1, 3, 3, 6, 1, 9, 4, 5, 8, 8, 5, 5, 1, 6, 4, 6, 4, 8, 0, 1, 9, 8, 2, 4, 6, 2, 9, 2, 7, 0, 9, 5, 2, 3, 2, 8, 4, 8, 0, 4, 0, 1, 2, 9, 5, 5, 3, 2, 4, 0, 5, 8, 1, 9, 9, 1, 0, 6, 4, 5
Offset: 1

Views

Author

Eric W. Weisstein, Apr 13 2004

Keywords

Comments

Arc length of the trifolium r = a*cos(3*theta).

Examples

			6.68244661027762911506475116253009811970049133619458855164648...
		

Crossrefs

Cf. A249491.

Programs

Formula

Equals 2*A249491. - Altug Alkan, Oct 02 2018

A249492 Decimal expansion of rho(a,b), the cross-correlation coefficient of two sides of a random Gaussian triangle (in two dimensions).

Original entry on oeis.org

2, 3, 2, 5, 5, 9, 3, 4, 6, 5, 4, 3, 1, 7, 8, 2, 3, 4, 4, 7, 3, 0, 9, 0, 3, 5, 9, 7, 5, 0, 3, 3, 3, 8, 9, 9, 3, 1, 0, 4, 3, 5, 0, 1, 5, 4, 3, 5, 0, 2, 0, 4, 0, 9, 8, 8, 5, 9, 9, 4, 2, 1, 0, 5, 9, 7, 7, 6, 1, 7, 9, 9, 9, 1, 4, 9, 8, 0, 9, 1, 9, 1, 7, 5, 9, 5, 4, 5, 1, 2, 5, 4, 6, 9, 0, 8, 3, 8, 5, 2, 7, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Oct 30 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			0.23255934654317823447309035975033389931043501543502...
		

Crossrefs

Programs

  • Maple
    Re(evalf((4*EllipticE(1/2) - sqrt(3)*EllipticK(I/sqrt(3)) - Pi)/(4 - Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; rho = (p - Pi)/(4 - Pi); RealDigits[rho, 10, 103] // First
    RealDigits[(3 EllipticE[8/9] - Pi)/(4 - Pi), 10, 103][[1]] (* Jan Mangaldan, Nov 26 2020 *)

Formula

rho = (p - Pi)/(4 - Pi), where p is A249491, the expected value of the product of two sides.

A249542 Decimal expansion of the average product of a side and an adjacent angle of a random Gaussian triangle in two dimensions.

Original entry on oeis.org

1, 6, 3, 7, 7, 2, 9, 3, 2, 4, 8, 5, 6, 8, 6, 8, 0, 3, 2, 7, 8, 0, 1, 5, 6, 9, 5, 6, 7, 9, 8, 4, 7, 6, 4, 5, 5, 8, 2, 0, 3, 8, 1, 9, 8, 7, 0, 9, 0, 5, 9, 3, 4, 1, 7, 5, 4, 8, 7, 6, 5, 2, 2, 4, 7, 7, 1, 2, 0, 5, 6, 8, 9, 3, 3, 1, 1, 1, 6, 4, 9, 0, 2, 1, 5, 0, 7, 1, 1, 3, 4, 8, 3, 2, 2, 0, 7, 1, 2, 4, 6, 9, 9, 2, 8
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.
As of 2010, an exact expression of this constant was not known, according to Steven Finch.
This average product is noticeably smaller than the product of the averages sqrt(Pi)*Pi/3 = 1.8561..., the side length being negatively correlated with the adjacent angle value.

Examples

			1.6377293248568680327801569567984764558203819870905934...
		

Crossrefs

Programs

  • Mathematica
    ex = (-Sqrt[3]*Log[3] + Pi^2 - 8*PolyLog[2, 2-Sqrt[3]] + 2*PolyLog[2, 7-4*Sqrt[3]])/(2*Sqrt[Pi]); RealDigits[ex, 10, 105] // First
  • Python
    from mpmath import *
    mp.dps=106
    C = (-sqrt(3)*log(3) + pi**2 - 8*polylog(2, 2-sqrt(3)) + 2*polylog(2, 7 - 4*sqrt(3)))/(2*sqrt(pi))
    print([int(n) for n in list(str(C).replace('.', '')[:-1])]) # Indranil Ghosh, Jul 04 2017

Formula

Equals (1/(3*Pi))*Integral_{x=0..oo} Integral_{y=0..oo} Integral_{t=0..Pi} x^2*y*t*exp(-(1/3)*(x^2 - x*y*cos(t) + y^2)) dt dy dx.
Equals (-sqrt(3)*log(3) + Pi^2 - 8*Li_2(2-sqrt(3)) + 2*Li_2(7-4*sqrt(3)))/(2*sqrt(Pi)), where Li_2 is the dilogarithm function.

A334848 Decimal expansion of circumference of x^2 + 9 y^2 = 9.

Original entry on oeis.org

1, 3, 3, 6, 4, 8, 9, 3, 2, 2, 0, 5, 5, 5, 2, 5, 8, 2, 3, 0, 1, 2, 9, 5, 0, 2, 3, 2, 5, 0, 6, 0, 1, 9, 6, 2, 3, 9, 4, 0, 0, 9, 8, 2, 6, 7, 2, 3, 8, 9, 1, 7, 7, 1, 0, 3, 2, 9, 2, 9, 6, 0, 3, 9, 6, 4, 9, 2, 5, 8, 5, 4, 1, 9, 0, 4, 6, 5, 6, 9, 6, 0, 8, 0, 2, 5
Offset: 2

Views

Author

Clark Kimberling, Jun 15 2020

Keywords

Examples

			arclength = 13.3648932205552582301295023250601962394009826...
		

Crossrefs

Programs

  • Mathematica
    s = Integrate[Sqrt[D[ 3 Cos[t], t]^2 + D[Sin[t], t]^2], {t, 0, 2 Pi}]
    r = N[s, 200]
    RealDigits[r][[1]]

Formula

arclength = 4*E(-8), where E = complete elliptic integral.
Equals 2*A093728 = 4*A249491.

A249522 Decimal expansion of the expected product of two sides of a random Gaussian triangle in three dimensions.

Original entry on oeis.org

5, 3, 0, 7, 9, 7, 3, 3, 7, 2, 5, 3, 0, 7, 5, 2, 2, 9, 7, 0, 6, 7, 9, 5, 8, 9, 8, 9, 8, 7, 7, 8, 1, 6, 6, 4, 8, 3, 8, 4, 3, 1, 8, 8, 8, 2, 1, 9, 9, 8, 4, 3, 9, 1, 6, 7, 9, 6, 1, 9, 6, 1, 2, 1, 7, 4, 6, 1, 8, 1, 8, 2, 0, 8, 1, 5, 6, 1, 8, 7, 6, 9, 0, 4, 2, 2, 8, 0, 1, 7, 2, 9, 3, 9, 0, 2, 5, 3, 3, 5, 2, 4, 6
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Examples

			5.3079733725307522970679589898778166483843188821998439167961...
		

Crossrefs

Programs

  • Mathematica
    p = 2 + 6*Sqrt[3]/Pi; RealDigits[p, 10, 104] // First

Formula

p = 2 + 6*sqrt(3)/Pi.

A249523 Decimal expansion of rho(a,b), the cross-correlation coefficient of two sides of a random Gaussian triangle in three dimensions.

Original entry on oeis.org

2, 3, 7, 0, 5, 1, 0, 2, 5, 2, 0, 9, 6, 0, 0, 2, 8, 6, 5, 8, 5, 5, 6, 9, 5, 0, 4, 6, 7, 6, 4, 0, 8, 5, 7, 1, 9, 4, 0, 1, 7, 6, 9, 1, 6, 2, 3, 6, 9, 7, 8, 1, 3, 1, 8, 6, 3, 2, 3, 8, 2, 6, 4, 5, 8, 9, 6, 8, 3, 1, 0, 6, 2, 3, 1, 4, 3, 1, 6, 5, 3, 1, 1, 8, 4, 1, 4, 5, 3, 3, 9, 9, 3, 8, 5, 7, 3, 3, 6, 9, 4, 3, 3
Offset: 0

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			0.237051025209600286585569504676408571940176916236978...
		

Crossrefs

Programs

  • Mathematica
    rho = (-8 + 3*Sqrt[3] + Pi)/(-8 + 3*Pi); RealDigits[rho, 10, 103] // First
  • PARI
    (sqrt(27)+Pi-8)/(3*Pi-8) \\ Charles R Greathouse IV, Apr 20 2016

Formula

rho = (-8 + 3*sqrt(3) + Pi)/(-8 + 3*Pi).
Showing 1-6 of 6 results.