A249530 T(n,k)=Number of length n+5 0..k arrays with no six consecutive terms having five times any element equal to the sum of the remaining five.
62, 606, 122, 3492, 1572, 240, 13580, 12156, 4120, 472, 40950, 59720, 42400, 10834, 928, 104562, 217170, 263156, 147984, 28500, 1824, 235196, 655352, 1154444, 1161050, 516652, 74886, 3586, 480912, 1699092, 4116620, 6143828, 5126096
Offset: 1
Examples
Some solutions for n=3 k=4 ..1....1....0....1....0....1....1....0....1....0....0....1....0....0....1....1 ..0....1....0....3....3....4....4....4....0....0....0....3....2....4....2....2 ..1....4....0....3....0....0....1....0....3....3....1....0....0....4....3....0 ..2....4....1....1....2....2....1....0....4....1....0....1....4....1....0....3 ..2....0....3....1....0....1....0....0....2....1....1....1....1....4....2....4 ..4....0....0....3....4....0....3....2....4....4....1....1....0....0....1....3 ..2....1....1....2....0....2....3....2....2....3....1....1....1....1....1....3 ..0....3....4....1....0....2....0....2....4....0....4....1....1....1....4....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..468
Crossrefs
Column 1 is A135493(n+5)
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5)
k=2: [order 92]
Empirical for row n:
n=1: [linear recurrence of order 16; also a polynomial of degree 6 plus a quasipolynomial of degree 0 with period 60]
Comments