cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249554 Numbers m such that there are precisely 11 groups of order m.

Original entry on oeis.org

140, 364, 380, 460, 476, 572, 748, 819, 860, 940, 988, 1036, 1148, 1180, 1196, 1276, 1292, 1340, 1484, 1564, 1580, 1612, 1628, 1660, 1708, 1804, 1953, 2044, 2060, 2108, 2140, 2204, 2236, 2332, 2444, 2492, 2540, 2668, 2684, 2716, 2780, 2812, 2828, 2924, 3052, 3068, 3116, 3196, 3212
Offset: 1

Views

Author

N. J. A. Sloane, Nov 01 2014

Keywords

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), this sequence (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • GAP
    A249554 := Filtered([1..2015], n -> NumberSmallGroups(n) = 11); # Muniru A Asiru, Oct 16 2017
  • Maple
    with(GroupTheory): select(n->NumGroups(n)=11,[$1..4000]); # Muniru A Asiru, Mar 28 2018
  • Mathematica
    Select[Range[10^4], FiniteGroupCount[#] == 11 &] (* A current limit in Mathematica is such that some orders >2047 may not be evaluated.*)(* Robert Price, May 24 2019 *)

Extensions

More terms added by Muniru A Asiru, Oct 23 2017
Incorrect b-file shortened by Andrew Howroyd, Jan 28 2022