A249554 Numbers m such that there are precisely 11 groups of order m.
140, 364, 380, 460, 476, 572, 748, 819, 860, 940, 988, 1036, 1148, 1180, 1196, 1276, 1292, 1340, 1484, 1564, 1580, 1612, 1628, 1660, 1708, 1804, 1953, 2044, 2060, 2108, 2140, 2204, 2236, 2332, 2444, 2492, 2540, 2668, 2684, 2716, 2780, 2812, 2828, 2924, 3052, 3068, 3116, 3196, 3212
Offset: 1
Keywords
Links
Crossrefs
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), this sequence (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
Programs
-
GAP
A249554 := Filtered([1..2015], n -> NumberSmallGroups(n) = 11); # Muniru A Asiru, Oct 16 2017
-
Maple
with(GroupTheory): select(n->NumGroups(n)=11,[$1..4000]); # Muniru A Asiru, Mar 28 2018
-
Mathematica
Select[Range[10^4], FiniteGroupCount[#] == 11 &] (* A current limit in Mathematica is such that some orders >2047 may not be evaluated.*)(* Robert Price, May 24 2019 *)
Extensions
More terms added by Muniru A Asiru, Oct 23 2017
Incorrect b-file shortened by Andrew Howroyd, Jan 28 2022