cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A249666 Numbers n such that the sum of n and the largest primeA151799(n)) is prime.

Original entry on oeis.org

3, 4, 6, 10, 12, 16, 22, 24, 30, 36, 42, 46, 50, 54, 56, 66, 70, 76, 78, 84, 90, 92, 100, 114, 116, 120, 126, 130, 132, 142, 144, 156, 160, 170, 174, 176, 180, 186, 192, 196, 202, 210, 220, 222, 226, 232, 234, 240, 246, 250, 252, 276, 280, 282, 286, 288, 294, 300, 306, 310, 324
Offset: 1

Views

Author

Antonio Roldán, Dec 03 2014

Keywords

Examples

			66 is in the sequence because A151799(66)=61, and 66+61=127 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400],PrimeQ[#+NextPrime[#,-1]]&] (* Harvey P. Dale, Aug 04 2019 *)
  • PARI
    {for(i=3,10^3,k=i+precprime(i-1);if(isprime(k),print1(i,", ")))}

A249667 Numbers n such that the sum of n and the largest primen is also prime.

Original entry on oeis.org

6, 24, 30, 36, 50, 54, 78, 84, 114, 132, 144, 156, 174, 210, 220, 252, 294, 300, 306, 330, 360, 378, 474, 492, 510, 512, 528, 546, 560, 594, 610, 650, 660, 690, 714, 720, 762, 780, 800, 804, 810, 816, 870, 912, 996, 1002, 1068, 1074, 1104, 1120, 1170, 1176, 1190, 1210, 1236, 1262
Offset: 1

Views

Author

Antonio Roldán, Dec 03 2014

Keywords

Comments

This sequence is the intersection of A249624 and A249666.

Examples

			114 is in the sequence because the least prime>114 is 127 and 114+127=241 is prime; the largest prime<114 is 113 and 114+113=227 is prime. Also, 114 is in A249624 and A249666.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1500],AllTrue[#+{NextPrime[#],NextPrime[#,-1]},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 09 2016 *)
  • PARI
    {for(i=3,2*10^3,k=i+nextprime(i+1);q=i+precprime(i-1);if(isprime(k)&&isprime(q),print1(i,", ")))}
    
  • Python
    from gmpy2 import is_prime, next_prime
    A249667_list, p = [], 2
    for _ in range(10**4):
        q = next_prime(p)
        n1 = 2*p+1
        n2 = p+q+1
        while n1 < p+q:
            if is_prime(n1) and is_prime(n2):
                A249667_list.append(int(n1-p))
            n1 += 2
            n2 += 2
        p = q # Chai Wah Wu, Dec 06 2014

A249676 Terms k of A249667 such that k-A151799(k) = A151800(k)-k.

Original entry on oeis.org

6, 30, 50, 144, 300, 560, 610, 650, 660, 714, 780, 810, 816, 870, 1120, 1176, 1190, 1806, 2130, 2470, 2490, 2550, 2922, 3030, 3240, 3330, 3390, 3480, 3600, 3620, 3840, 4266, 4368, 5796, 5850, 6270, 6786, 6954, 7074, 7710, 8280, 9400, 9990, 10146, 10350, 10380, 10530, 10660, 11064
Offset: 1

Views

Author

Antonio Roldán, Dec 03 2014

Keywords

Examples

			610 is in A249667: the least prime>610 is 613, and 610+613=1223 is prime; the largest prime<610 is 607, and 610+607=1217 is prime. Also, 613-610=610-607=3, then 610 is in the current sequence.
		

Crossrefs

Programs

  • PARI
    {for(i=3,2*10^4,m=nextprime(i+1);k=i+m;n=precprime(i-1);q=i+n;if(isprime(k)&&isprime(q)&&m-i==i-n,print1(i,", ")))}
Showing 1-3 of 3 results.