cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249670 a(n) = A017665(n)*A017666(n).

Original entry on oeis.org

1, 6, 12, 28, 30, 2, 56, 120, 117, 45, 132, 21, 182, 84, 40, 496, 306, 78, 380, 210, 672, 198, 552, 10, 775, 273, 1080, 2, 870, 60, 992, 2016, 176, 459, 1680, 3276, 1406, 570, 2184, 36, 1722, 112, 1892, 231, 390, 828, 2256, 372, 2793, 4650, 408, 1274, 2862
Offset: 1

Views

Author

Michel Marcus, Nov 03 2014

Keywords

Comments

If n is a k-multiperfect, then a(n) = k.

Crossrefs

Cf. A000203 (sigma(n)).
Cf. A017665/A017666 (abundancy of n).
Cf. A009194 (gcd(n, sigma(n))), A064987 (n*sigma(n)).

Programs

  • Haskell
    a249670 n = div (n * s) (gcd n s ^ 2)
     where s = sum (filter (\k -> mod n k == 0) [1..n])
    -- Allan C. Wechsler, Mar 31 2023
  • Mathematica
    a249670[n_Integer] := Numerator[DivisorSigma[-1, n]]*Denominator[DivisorSigma[-1, n]]; a249670 /@ Range[80] (* Michael De Vlieger, Nov 10 2014 *)
  • PARI
    a(n) = my(ab = sigma(n)/n); numerator(ab)*denominator(ab);
    

Formula

a(n) = A064987(n)/A009194(n)^2.
a(A000396(n)) = 2 (perfect).
a(A005820(n)) = 3 (tri-perfect).
For p prime, a(p) = p*(p+1).