cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249693 a(4n) = 3*n+1, a(2n+1) = 3*n+2, a(4n+2) = 3*n.

Original entry on oeis.org

1, 2, 0, 5, 4, 8, 3, 11, 7, 14, 6, 17, 10, 20, 9, 23, 13, 26, 12, 29, 16, 32, 15, 35, 19, 38, 18, 41, 22, 44, 21, 47, 25, 50, 24, 53, 28, 56, 27, 59, 31, 62, 30, 65, 34, 68, 33, 71, 37, 74, 36, 77, 40, 80, 39, 83, 43, 86, 42, 89, 46, 92, 45
Offset: 0

Views

Author

Paul Curtz, Dec 03 2014

Keywords

Comments

A permutation of the nonnegative numbers.

Crossrefs

Programs

  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + 2*x - x^2 + 3*x^3 + 3*x^4 + x^5)/(1 - x^2 - x^4 + x^6))); // G. C. Greubel, Sep 20 2018
  • Mathematica
    a[n_] := (1/8)*(3*(-1)^(n+1)*(n+1)+9*n+10*{1, 0, -1, 0}[[Mod[n, 4]+1]]+1); Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 04 2014, after Robert Israel *)
  • PARI
    x='x+O('x^75); Vec((1 + 2*x - x^2 + 3*x^3 + 3*x^4 + x^5)/(1 - x^2 - x^4 + x^6)) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n+4) = a(n) + (sequence of period 2: repeat 3, 6).
a(4n+1) = 2*a(4n).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n) is the rank of A061037(n) = -1, -3, 0, 5, ... in A247829(n) = 0, -1, -3, 2, ... .
G.f.: (1 + 2*x - x^2 + 3*x^3 + 3*x^4 + x^5)/(1 - x^2 - x^4 + x^6).
a(n) = (1 + 9*n - 3*(n+1)*(-1)^n + 10*cos(n*Pi/2))/8. - Robert Israel, Dec 03 2014