cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249732 Number of (not necessarily distinct) multiples of 4 on row n of Pascal's triangle.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 1, 0, 6, 4, 3, 0, 7, 2, 3, 0, 14, 12, 11, 8, 13, 6, 7, 0, 19, 14, 11, 4, 17, 6, 7, 0, 30, 28, 27, 24, 29, 22, 23, 16, 33, 26, 23, 12, 29, 14, 15, 0, 43, 38, 35, 28, 37, 22, 23, 8, 45, 34, 27, 12, 37, 14, 15, 0, 62, 60, 59, 56, 61, 54, 55, 48, 65, 58, 55, 44, 61, 46, 47, 32
Offset: 0

Views

Author

Antti Karttunen, Nov 04 2014

Keywords

Comments

a(n) = Number of zeros on row n of A034931 (Pascal's triangle reduced modulo 4).
This should have a formula (see A048967).

Examples

			Row 9 of Pascal's triangle is: {1,9,36,84,126,126,84,36,9,1}. The terms 36 and 84 are only multiples of four, and both of them occur two times on that row, thus a(9) = 2*2 = 4.
Row 10 of Pascal's triangle is: {1,10,45,120,210,252,210,120,45,10,1}. The terms 120 (= 4*30) and 252 (= 4*63) are only multiples of four, and the former occurs twice, while the latter is alone at the center, thus a(10) = 2+1 = 3.
		

Crossrefs

Programs

  • PARI
    A249732(n) = { my(c=0); for(k=0,n\2,if(!(binomial(n,k)%4),c += (if(k<(n/2),2,1)))); return(c); } \\ Slow...
    for(n=0, 8192, write("b249732.txt", n, " ", A249732(n)));
    
  • Python
    def A249732(n): return n+1-(2+((n>>1)&~n).bit_count()<>1) # Chai Wah Wu, Jul 24 2025

Formula

Other identities:
a(n) <= A048277(n) for all n.
a(n) <= A048967(n) for all n.