A249731 Number of multiples of 4 on row n of Pascal's triangle minus the number of multiples of 9 on the same row: a(n) = A249732(n) - A249733(n).
0, 0, 0, 0, 2, 0, 1, 0, 6, -2, 0, 0, 3, 0, 3, -2, 13, 12, -1, 2, 13, -2, 3, 0, 15, 12, 11, -20, -4, -12, -12, -14, 21, 14, 20, 24, 1, 2, 11, -4, 20, 20, 11, 6, 29, -18, -4, -6, 22, 26, 32, 18, 32, 22, -25, -34, 9, -4, -1, -6, 9, 0, 15, -50, 25, 36, 23, 32, 49, 32, 44, 48, 13, 26, 43, 10, 41, 40, 31, 24, 73, -12
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..6561
Programs
-
Python
import re from gmpy2 import digits def A249731(n): s = digits(n,3) n1 = s.count('1') n2 = s.count('2') n01 = s.count('10') n02 = s.count('20') n11 = len(re.findall('(?=11)',s)) n12 = s.count('21') return (((3*(n01+1)+(n02<<2)+n12<<2)+3*n11)*(3**n2<
>1)&~n).bit_count()< >1) # Chai Wah Wu, Jul 24 2025 -
Scheme
(define (A249731 n) (- (A249732 n) (A249733 n)))
Comments