A249780 Product of lowest and highest prime factors of 2^n-1.
9, 49, 15, 961, 21, 16129, 51, 511, 93, 2047, 39, 67092481, 381, 1057, 771, 17179607041, 219, 274876858369, 123, 2359, 2049, 8388607, 723, 55831, 24573, 1838599, 381, 486737, 993, 4611686014132420609, 196611, 4196353, 393213, 3810551, 327, 137438953471, 1572861, 849583, 185043
Offset: 2
Keywords
Examples
The lowest and higest prime factors of 2^6-1 are 3 and 7, so A(6) = 21
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..200
Programs
-
Maple
a:= proc(n) local F; F:= numtheory:-factorset(2^n-1); min(F)*max(F) end proc: seq(a(n),n=2..50); # Robert Israel, Nov 05 2014
-
Mathematica
plhpf[n_]:=Module[{fn=FactorInteger[n]},fn[[1,1]]fn[[-1,1]]]; Table[plhpf [2^n-1],{n,2,40}] (* Harvey P. Dale, May 23 2020 *)
-
PARI
for(n=2, 50, p=2^n-1; print1(factor(p)[1, 1]*factor(p)[#factor(p)[, 1], 1], ", ")) \\ Derek Orr, Nov 05 2014
-
Python
from sympy import primefactors A249780_list, x = [], 1 for n in range(2,10): x = 2*x + 1 p = primefactors(x) A249780_list.append(max(p)*min(p)) # Chai Wah Wu, Nov 05 2014
Extensions
More terms from Derek Orr, Nov 05 2014