cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jacob Vecht

Jacob Vecht's wiki page.

Jacob Vecht has authored 7 sequences.

A309312 Areas of Heronian triangles that uniquely define the lengths of the triangle's sides.

Original entry on oeis.org

6, 30, 42, 54, 66, 72, 114, 132, 150, 198, 204, 234, 294, 306, 378, 390, 408, 468, 486, 522, 570, 594, 648, 684, 726, 744, 750, 798, 816, 876, 984, 1014, 1026, 1110, 1170, 1218, 1254, 1290, 1332, 1350, 1368, 1428, 1494, 1518, 1548, 1554, 1590, 1734, 1770, 1782, 1806, 1938, 1950, 1974
Offset: 1

Author

Jacob Vecht, Jul 22 2019

Keywords

Comments

These are not necessarily primitive Heronian triangles. The corresponding sequence for primitive Heronian triangles is neither a subset nor a superset of this sequence.

Examples

			A triangle with integer sides and an area of 42 square units necessarily has sides 7,15,20, so 42 is a term. 12 is not a term because an area of 12 could have sides 6,5,5 or 8,5,5.
		

Crossrefs

Subsequence of A188158.

Extensions

Corrected 37th term "1248" to "1254".

A249836 Numbers n for which tan(n) > n.

Original entry on oeis.org

1, 260515, 37362253, 122925461, 534483448, 3083975227, 902209779836, 74357078147863, 214112296674652, 642336890023956, 18190586279576483, 248319196091979065, 1108341089274117551, 118554299812338354516058, 1428599129020608582548671, 4285797387061825747646013
Offset: 1

Author

Jacob Vecht, Nov 07 2014

Keywords

Comments

Supersequence of A079332, hence 3083975227 and 214112296674652 are members. - Charles R Greathouse IV, Nov 07 2014
This sequence consists of all positive-valued terms of A088306. (Of the first 1000 terms in A088306, 518 are positive.) - Jon E. Schoenfield, Nov 07 2014
From Daniel Forgues, May 27 2015, Jun 12 2005: (Start)
Numbers n for which tanc(n) > 1, where tanc(n) = tan(n)/n, tanc(0) = 1, where n are radians; cf. Weisstein link.
It is an open problem whether tan(n) > n for infinitely many integer n.
Jan Kristian Haugland found a(3) = 37362253, Bob Delaney found a(6) = 3083975227.
For n <= tan(n) < n+1, or floor(tan(n)) = n, we get a fixed point of the iterated floor(tan(n)). Currently, the only known fixed points are 0 and 1. (Cf. A258024.)
It is proved that |tan n| > n for infinitely many n, and that tan n > n/4 for infinitely many n. (Bellamy, Lagarias, Lazebnik) (End)
Since tan(n) has a transcendental period, namely Pi, it seems very likely that not only tan(n) > n for infinitely many integers n, but also that tan(n) > kn for infinitely many integers n, for any integer k. It even seems likely that not only n < tan(n) < n+1 for infinitely many integers n (not just for n = 1), but also that kn < tan(n) < kn + 1 for infinitely many integers n, for any integer k. It seems that we are bound to stumble upon the requisite positive delta such that n mod Pi = Pi/2 - delta. - Daniel Forgues, Jun 15 2015
It appears that we need {n / Pi} = 0.5 - delta, with delta < k/n, for some k, where {.} denotes the fractional part: we have, 260515/Pi = 82924.49999917..., 37362253/Pi = 11892774.4999999915... etc. - Daniel Forgues, Jun 18 2015, edited by M. F. Hasler, Aug 19 2015
Indeed, from the graph of the function we see that tan(n) > n for numbers of the form n = (m + 1/2)*Pi - epsilon (i.e., n/Pi = m + 1/2 - epsilon/Pi) with small epsilon > 0, for which tan(n) = tan((m + 1/2)*Pi - epsilon) = tan(Pi/2-epsilon) ~ 1/epsilon, using tan(Pi/2-x) = sin(Pi/2-x)/cos(Pi/2-x) = cos(x)/sin(x) ~ 1/x as x -> 0. Thus tan(n) > n if epsilon < 1/n, or delta = epsilon/Pi < k/n with k = 1/Pi. - M. F. Hasler, Aug 19 2015
The first prime term is a(28). - Jacob Vecht, Aug 09 2020

Examples

			tan(1) = 1.557... > 1 so 1 is a member.
		

Crossrefs

Subsequence of positive terms of A088306. Supersequence of A079332.
Cf. A000503(n) = floor(tan(n)).

Programs

Formula

log(a(n)) / n ~ Pi, conjectured. - M. F. Hasler, Sep 10 2020 [corrected thanks to Vaclav Kotesovec, Feb 22 2021]

A249780 Product of lowest and highest prime factors of 2^n-1.

Original entry on oeis.org

9, 49, 15, 961, 21, 16129, 51, 511, 93, 2047, 39, 67092481, 381, 1057, 771, 17179607041, 219, 274876858369, 123, 2359, 2049, 8388607, 723, 55831, 24573, 1838599, 381, 486737, 993, 4611686014132420609, 196611, 4196353, 393213, 3810551, 327, 137438953471, 1572861, 849583, 185043
Offset: 2

Author

Jacob Vecht, Nov 05 2014

Keywords

Examples

			The lowest and higest prime factors of 2^6-1 are 3 and 7, so A(6) = 21
		

Programs

  • Maple
    a:= proc(n) local F; F:= numtheory:-factorset(2^n-1); min(F)*max(F) end proc:
    seq(a(n),n=2..50); # Robert Israel, Nov 05 2014
  • Mathematica
    plhpf[n_]:=Module[{fn=FactorInteger[n]},fn[[1,1]]fn[[-1,1]]]; Table[plhpf [2^n-1],{n,2,40}] (* Harvey P. Dale, May 23 2020 *)
  • PARI
    for(n=2, 50, p=2^n-1; print1(factor(p)[1, 1]*factor(p)[#factor(p)[, 1], 1], ", ")) \\ Derek Orr, Nov 05 2014
    
  • Python
    from sympy import primefactors
    A249780_list, x = [], 1
    for n in range(2,10):
        x = 2*x + 1
        p = primefactors(x)
        A249780_list.append(max(p)*min(p)) # Chai Wah Wu, Nov 05 2014

Formula

a(n) = A005420(n) * A049479(n)

Extensions

More terms from Derek Orr, Nov 05 2014

A249627 Product of the lowest and highest prime factors of n-th repunit A002275(n).

Original entry on oeis.org

121, 111, 1111, 11111, 111, 1111111, 1507, 1001001, 100001, 11111111111, 29703, 14064697609, 10000001, 8718483, 64705883, 11111111111111111, 1001001, 1234567901234567900987654320987654321, 307571, 32516067, 5645629, 123456790123456790123454320987654320987654321
Offset: 2

Author

Jacob Vecht, Nov 02 2014

Keywords

Examples

			Highest and lowest prime factors of 111111 are 3 and 37, so the sixth term is 111.
		

Crossrefs

Cf. A002275.

Programs

  • Mathematica
    plh[n_]:=Module[{fi=FactorInteger[FromDigits[PadRight[{},n,1]]]},fi[[1,1]]fi[[-1,1]]]; Array[plh,30,2] (* Harvey P. Dale, May 04 2021 *)
  • PARI
    for(n=2,20,p=(10^n-1)/9;print1(factor(p)[1,1]*factor(p)[#factor(p)[,1],1],", ")) \\ Derek Orr, Nov 02 2014
    
  • Python
    from sympy import factorint
    A249627_list = [min(fs)*max(fs) for fs in (factorint((10**n-1)//9) for n in range(2,31))] # Chai Wah Wu, Nov 04 2019

Extensions

More terms from Derek Orr, Nov 02 2014

A117853 Decimal expansion of 2^30402457-1, the 43th Mersenne prime A000668(43).

Original entry on oeis.org

3, 1, 5, 4, 1, 6, 4, 7, 5, 6, 1, 8, 8, 4, 6, 0, 8, 0, 9, 3, 6, 3, 0, 3, 0, 2, 8, 6, 6, 4, 5, 4, 5, 1, 7, 0, 1, 2, 6, 5, 1, 9, 6, 5, 6, 2, 6, 2, 3, 2, 3, 8, 7, 0, 3, 1, 6, 3, 2, 3, 7, 1, 0, 7, 9, 5, 1, 3, 5, 3, 8, 7, 4, 4, 9, 0, 0, 6, 9, 3, 4, 6, 2, 0, 9, 4, 3, 8, 6, 2, 9, 4, 7, 5, 1, 7, 0, 2, 9, 6, 6, 3, 6, 2, 3
Offset: 9152052

Author

Jacob Vecht, May 02 2006

Keywords

Comments

The decimal expansion of 2^30402457-1. This is the 43rd known Mersenne prime, found at Dec 15, 2005 by the GIMPS project / Curtis Cooper and Steven Boone. The number has 9152052 digits; as a string, it occupies 9.24 MB.

Examples

			A000668(43) = 3154164756188460809363030286645451701265196562623...7411652943871.
		

Crossrefs

Cf. A000043 (Mersenne exponents), A000668.

Programs

  • Mathematica
    RealDigits[10^N[30402457Log[10, 2] - 9152051, 111]][[1]]

Extensions

Edited by Georg Fischer, Jul 19 2021

A117805 Start with 3. Square the previous term and subtract it.

Original entry on oeis.org

3, 6, 30, 870, 756030, 571580604870, 326704387862983487112030, 106735757048926752040856495274871386126283608870, 11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068030
Offset: 0

Author

Jacob Vecht, Apr 29 2006

Keywords

Comments

The next term is too large to include.
a(n) = A005267(n+1)+1. - R. J. Mathar, Apr 22 2007. This is true by induction. - M. F. Hasler, May 04 2007<
For any a(0) > 2, the sequence a(n) = a(n-1) * (a(n-1) - 1) gives a constructive proof that there exists integers with at least n + 1 distinct prime factors, e.g., a(n). As a corollary, this gives a constructive proof of Euclid's theorem stating that there are an infinity of primes. - Daniel Forgues, Mar 03 2017

Examples

			Start with 3; 3^2 - 3 = 6; 6^2 - 6 = 30; etc.
		

Crossrefs

Cf. A007018.

Programs

  • Maple
    f:=proc(n) option remember; if n=0 then RETURN(3); else RETURN(f(n-1)^2-f(n-1)); fi; end;
  • Mathematica
    k=3;lst={k};Do[k=k^2-k;AppendTo[lst,k],{n,9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *)
    RecurrenceTable[{a[0]==3, a[n]==a[n-1]*(a[n-1] - 1)}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 17 2014 *)
    NestList[#^2-#&,3,10] (* Harvey P. Dale, Oct 11 2023 *)

Formula

a(0) = 3, a(n) = (a(n-1))^2 - a(n-1).
a(n) ~ c^(2^n), where c = 2.330283023986140936420341573975137247354077600883596774023675490739568138... . - Vaclav Kotesovec, Dec 17 2014

A117293 Mersenne primes written in binary.

Original entry on oeis.org

11, 111, 11111, 1111111, 1111111111111, 11111111111111111, 1111111111111111111, 1111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111111111
Offset: 1

Author

Jacob Vecht, Apr 23 2006

Keywords

Comments

The number of bits in a(n) is equal to A000043(n). - Omar E. Pol, Feb 22 2008

Examples

			The third Mersenne prime is 31, i.e., 11111 in binary.
		

Crossrefs

Programs

  • Mathematica
    Map[(10^# - 1)/9 &, MersennePrimeExponent[Range[9]]] (* Amiram Eldar, Oct 22 2024 *)
  • PARI
    apply(p->fromdigits(binary(p)), select(isprime, vector(20,n,2^prime(n)-1))) \\ Charles R Greathouse IV, Sep 14 2016

Formula

a(n) = A007088(A000668(n)). - Amiram Eldar, Oct 22 2024