cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000043 Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281
Offset: 1

Views

Author

Keywords

Comments

Equivalently, integers k such that 2^k - 1 is prime.
It is believed (but unproved) that this sequence is infinite. The data suggest that the number of terms up to exponent N is roughly K log N for some constant K.
Length of prime repunits in base 2.
The associated perfect number N=2^(p-1)*M(p) (=A019279*A000668=A000396), has 2p (=A061645) divisors with harmonic mean p (and geometric mean sqrt(N)). - Lekraj Beedassy, Aug 21 2004
In one of his first publications Euler found the numbers up to 31 but erroneously included 41 and 47.
Equals number of bits in binary expansion of n-th Mersenne prime (A117293). - Artur Jasinski, Feb 09 2007
Number of divisors of n-th even perfect number, divided by 2. Number of divisors of n-th even perfect number that are powers of 2. Number of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n). - Omar E. Pol, Feb 24 2008
Number of divisors of n-th even superperfect number A061652(n). Numbers of divisors of n-th superperfect number A019279(n), assuming there are no odd superperfect numbers. - Omar E. Pol, Mar 01 2008
Differences between exponents when the even perfect numbers are represented as differences of powers of 2, for example: The 5th even perfect number is 33550336 = 2^25 - 2^12 then a(5)=25-12=13 (see A135655, A133033, A090748). - Omar E. Pol, Mar 01 2008
Number of 1's in binary expansion of n-th even perfect number (see A135650). Number of 1's in binary expansion of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n) (see A135652, A135653, A135654, A135655). - Omar E. Pol, May 04 2008
Indices of the numbers A006516 that are also even perfect numbers. - Omar E. Pol, Aug 30 2008
Indices of Mersenne numbers A000225 that are also Mersenne primes A000668. - Omar E. Pol, Aug 31 2008
The (prime) number p appears in this sequence if and only if there is no prime q<2^p-1 such that the order of 2 modulo q equals p; a special case is that if p=4k+3 is prime and also q=2p+1 is prime then the order of 2 modulo q is p so p is not a term of this sequence. - Joerg Arndt, Jan 16 2011
Primes p such that sigma(2^p) - sigma(2^p-1) = 2^p-1. - Jaroslav Krizek, Aug 02 2013
Integers k such that every degree k irreducible polynomial over GF(2) is also primitive, i.e., has order 2^k-1. Equivalently, the integers k such that A001037(k) = A011260(k). - Geoffrey Critzer, Dec 08 2019
Conjecture: for k > 1, 2^k-1 is (a Mersenne) prime or k = 2^(2^m)+1 (is a Fermat number) if and only if (k-1)^(2^k-2) == 1 (mod (2^k-1)k^2). - Thomas Ordowski, Oct 05 2023
Conjecture: for p prime, 2^p-1 is (a Mersenne) prime or p = 2^(2^m)+1 (is a Fermat number) if and only if (p-1)^(2^p-2) == 1 (mod 2^p-1). - David Barina, Nov 25 2024
Already as of Dec. 2020, all exponents up to 10^8 had been verified, implying that 74207281, 77232917 and 82589933 are indeed the next three terms. As of today, all exponents up to 130439863 have been tested at least once, see the GIMPS Milestones Report. - M. F. Hasler, Apr 11 2025
On June 23. 2025 all exponents up to 74340751 have been verified, confirming that 74207281 is the exponent of the 49th Mersenne Prime. - Rodolfo Ruiz-Huidobro, Jun 23 2025

Examples

			Corresponding to the initial terms 2, 3, 5, 7, 13, 17, 19, 31 ... we get the Mersenne primes 2^2 - 1 = 3, 2^3 - 1 = 7, 2^5 - 1 = 31, 127, 8191, 131071, 524287, 2147483647, ... (see A000668).
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.
  • F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 57.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 19.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 132-134.
  • B. Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.

Crossrefs

Cf. A000668 (Mersenne primes).
Cf. A028335 (integer lengths of Mersenne primes).
Cf. A000225 (Mersenne numbers).
Cf. A001348 (Mersenne numbers with n prime).

Programs

  • Mathematica
    MersennePrimeExponent[Range[48]] (* Eric W. Weisstein, Jul 17 2017; updated Oct 21 2024 *)
  • PARI
    isA000043(n) = isprime(2^n-1) \\ Michael B. Porter, Oct 28 2009
    
  • PARI
    is(n)=my(h=Mod(2,2^n-1)); for(i=1, n-2, h=2*h^2-1); h==0||n==2 \\ Lucas-Lehmer test for exponent e. - Joerg Arndt, Jan 16 2011, and Charles R Greathouse IV, Jun 05 2013
    forprime(e=2,5000,if(is(e),print1(e,", "))); /* terms < 5000 */
    
  • Python
    from sympy import isprime, prime
    for n in range(1,100):
        if isprime(2**prime(n)-1):
            print(prime(n), end=', ') # Stefano Spezia, Dec 06 2018

Formula

a(n) = log((1/2)*(1+sqrt(1+8*A000396(n))))/log(2). - Artur Jasinski, Sep 23 2008 (under the assumption there are no odd perfect numbers, Joerg Arndt, Feb 23 2014)
a(n) = A000005(A061652(n)). - Omar E. Pol, Aug 26 2009
a(n) = A000120(A000396(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Oct 30 2013

Extensions

Also in the sequence: p = 74207281. - Charles R Greathouse IV, Jan 19 2016
Also in the sequence: p = 77232917. - Eric W. Weisstein, Jan 03 2018
Also in the sequence: p = 82589933. - Gord Palameta, Dec 21 2018
a(46) = 42643801 and a(47) = 43112609, whose ordinal positions in the sequence are now confirmed, communicated by Eric W. Weisstein, Apr 12 2018
a(48) = 57885161, whose ordinal position in the sequence is now confirmed, communicated by Benjamin Przybocki, Jan 05 2022
Also in the sequence: p = 136279841. - Eric W. Weisstein, Oct 21 2024
As of Jan 31 2025, 48 terms are known, and are shown in the DATA section. Four additional numbers are known to be in the sequence, namely 74207281, 77232917, 82589933, and 136279841, but they may not be the next terms. See the GIMP website for the latest information. - N. J. A. Sloane, Jan 31 2025

A135650 Even perfect numbers written in base 2.

Original entry on oeis.org

110, 11100, 111110000, 1111111000000, 1111111111111000000000000, 111111111111111110000000000000000, 1111111111111111111000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Feb 21 2008, Feb 22 2008, Apr 28 2009

Keywords

Comments

The number of digits of a(n) is equal to 2*A000043(n)-1. The central digit is "1". The first digits are "1". The last digits are "0". The number of digits "1" is equal A000043(n). The number of digits "0" is equal A000043(n)-1.
The concatenation of digits "1" of a(n) gives the n-th Mersenne prime written in binary (see A117293(n)).
Also, the number of digits of a(n) is equal to A133033(n), the number of proper divisors of n-th even perfect number.

Examples

			a(3) = 111110000 because the 3rd even perfect number is 496 and 496 written in base 2 is 111110000. Note that 11111 is the 3rd Mersenne prime A000668(3) = 31 written in base 2.
		

Crossrefs

Programs

  • Mathematica
    Map[FromDigits[IntegerDigits[#, 2]] &, PerfectNumber[Range[8], "Even"]] (* Amiram Eldar, Oct 18 2024 *)

A135651 Even superperfect numbers written in base 2.

Original entry on oeis.org

10, 100, 10000, 1000000, 1000000000000, 10000000000000000, 1000000000000000000, 1000000000000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2008

Keywords

Comments

Also, superperfect numbers (A019279) written in base 2 (If there are no odd perfect numbers).
Also, concatenation of "1" and A090748(n) digits "0".
The number of digits of a(n) is equal to A000043(n) and also equal to the number of digits of n-th Mersenne prime written in base 2 (see A117293, A135650).

Examples

			a(3)=10000 because the 3rd even superperfect number A061652(3)=16 and 16 written in base 2 is equal to 10000.
		

Crossrefs

A135656 Perfect numbers divided by 2, written in base 2.

Original entry on oeis.org

11, 1110, 11111000, 111111100000, 111111111111100000000000, 11111111111111111000000000000000, 111111111111111111100000000000000000, 111111111111111111111111111111100000000000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Feb 28 2008

Keywords

Comments

The number of divisors of a(n) is equal to the number of its digits. This number is equal to 2*A000043(n)-2. The number of divisors of a(n) that are powers of 2 is equal to the number of divisors that are multiples of n-th Mersenne prime A000668(n) and this number of divisors is equal to A090748(n). The first digits of a(n) are "1". For n>1 the last digits are "0". The number of digits "1" is equal to A000043(n). The number of digits "0" is equal to A000043(n)-2. The concatenation of digits "1" gives the n-th Mersenne prime written in binary (see A117293(n)). The structure of divisors of a(n) represent a triangle (see example).

Examples

			a(4)=111111100000 because the 4th. perfect number is 8128 and 8128/2=4064 and 4064 written in base 2 is 111111100000. Note that 1111111 is the 4th. Mersenne prime A000668(4)=127, written in base 2.
The structure of divisors of a(4)=111111100000
		

Crossrefs

Perfect numbers divided by 2: A133028. Cf. A000396, A000668, A019279, A090748, A117293, A135650.

Formula

a(n)=A133028(n) written in base 2.

A161675 Mersenne primes written in base 8.

Original entry on oeis.org

3, 7, 37, 177, 17777, 377777, 1777777, 17777777777, 177777777777777777777, 377777777777777777777777777777, 377777777777777777777777777777777777, 1777777777777777777777777777777777777777777
Offset: 1

Views

Author

Vladislav-Stepan Malakhovsky & Juri-Stepan Gerasimov, Jun 16 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Map[FromDigits[IntegerDigits[2^# - 1, 8]] &, MersennePrimeExponent[Range[12]]] (* Amiram Eldar, Oct 22 2024 *)

Formula

a(n) = A007094(A000668(n)).

Extensions

a(6) and a(10) corrected by R. J. Mathar, Aug 03 2009

A161677 Mersenne primes written in base 4.

Original entry on oeis.org

3, 13, 133, 1333, 1333333, 133333333, 1333333333, 1333333333333333, 1333333333333333333333333333333, 133333333333333333333333333333333333333333333, 133333333333333333333333333333333333333333333333333333
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 16 2009

Keywords

Crossrefs

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,4]]&/@(2^MersennePrimeExponent[Range[20]]-1) (* Harvey P. Dale, Mar 25 2023 *)

Formula

a(n) = A007090(A000668(n)).

Extensions

Keyword:base added by R. J. Mathar, Aug 03 2009
Showing 1-6 of 6 results.