cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000043 Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281
Offset: 1

Views

Author

Keywords

Comments

Equivalently, integers k such that 2^k - 1 is prime.
It is believed (but unproved) that this sequence is infinite. The data suggest that the number of terms up to exponent N is roughly K log N for some constant K.
Length of prime repunits in base 2.
The associated perfect number N=2^(p-1)*M(p) (=A019279*A000668=A000396), has 2p (=A061645) divisors with harmonic mean p (and geometric mean sqrt(N)). - Lekraj Beedassy, Aug 21 2004
In one of his first publications Euler found the numbers up to 31 but erroneously included 41 and 47.
Equals number of bits in binary expansion of n-th Mersenne prime (A117293). - Artur Jasinski, Feb 09 2007
Number of divisors of n-th even perfect number, divided by 2. Number of divisors of n-th even perfect number that are powers of 2. Number of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n). - Omar E. Pol, Feb 24 2008
Number of divisors of n-th even superperfect number A061652(n). Numbers of divisors of n-th superperfect number A019279(n), assuming there are no odd superperfect numbers. - Omar E. Pol, Mar 01 2008
Differences between exponents when the even perfect numbers are represented as differences of powers of 2, for example: The 5th even perfect number is 33550336 = 2^25 - 2^12 then a(5)=25-12=13 (see A135655, A133033, A090748). - Omar E. Pol, Mar 01 2008
Number of 1's in binary expansion of n-th even perfect number (see A135650). Number of 1's in binary expansion of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n) (see A135652, A135653, A135654, A135655). - Omar E. Pol, May 04 2008
Indices of the numbers A006516 that are also even perfect numbers. - Omar E. Pol, Aug 30 2008
Indices of Mersenne numbers A000225 that are also Mersenne primes A000668. - Omar E. Pol, Aug 31 2008
The (prime) number p appears in this sequence if and only if there is no prime q<2^p-1 such that the order of 2 modulo q equals p; a special case is that if p=4k+3 is prime and also q=2p+1 is prime then the order of 2 modulo q is p so p is not a term of this sequence. - Joerg Arndt, Jan 16 2011
Primes p such that sigma(2^p) - sigma(2^p-1) = 2^p-1. - Jaroslav Krizek, Aug 02 2013
Integers k such that every degree k irreducible polynomial over GF(2) is also primitive, i.e., has order 2^k-1. Equivalently, the integers k such that A001037(k) = A011260(k). - Geoffrey Critzer, Dec 08 2019
Conjecture: for k > 1, 2^k-1 is (a Mersenne) prime or k = 2^(2^m)+1 (is a Fermat number) if and only if (k-1)^(2^k-2) == 1 (mod (2^k-1)k^2). - Thomas Ordowski, Oct 05 2023
Conjecture: for p prime, 2^p-1 is (a Mersenne) prime or p = 2^(2^m)+1 (is a Fermat number) if and only if (p-1)^(2^p-2) == 1 (mod 2^p-1). - David Barina, Nov 25 2024
Already as of Dec. 2020, all exponents up to 10^8 had been verified, implying that 74207281, 77232917 and 82589933 are indeed the next three terms. As of today, all exponents up to 130439863 have been tested at least once, see the GIMPS Milestones Report. - M. F. Hasler, Apr 11 2025
On June 23. 2025 all exponents up to 74340751 have been verified, confirming that 74207281 is the exponent of the 49th Mersenne Prime. - Rodolfo Ruiz-Huidobro, Jun 23 2025

Examples

			Corresponding to the initial terms 2, 3, 5, 7, 13, 17, 19, 31 ... we get the Mersenne primes 2^2 - 1 = 3, 2^3 - 1 = 7, 2^5 - 1 = 31, 127, 8191, 131071, 524287, 2147483647, ... (see A000668).
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.
  • F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 57.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 19.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 132-134.
  • B. Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.

Crossrefs

Cf. A000668 (Mersenne primes).
Cf. A028335 (integer lengths of Mersenne primes).
Cf. A000225 (Mersenne numbers).
Cf. A001348 (Mersenne numbers with n prime).

Programs

  • Mathematica
    MersennePrimeExponent[Range[48]] (* Eric W. Weisstein, Jul 17 2017; updated Oct 21 2024 *)
  • PARI
    isA000043(n) = isprime(2^n-1) \\ Michael B. Porter, Oct 28 2009
    
  • PARI
    is(n)=my(h=Mod(2,2^n-1)); for(i=1, n-2, h=2*h^2-1); h==0||n==2 \\ Lucas-Lehmer test for exponent e. - Joerg Arndt, Jan 16 2011, and Charles R Greathouse IV, Jun 05 2013
    forprime(e=2,5000,if(is(e),print1(e,", "))); /* terms < 5000 */
    
  • Python
    from sympy import isprime, prime
    for n in range(1,100):
        if isprime(2**prime(n)-1):
            print(prime(n), end=', ') # Stefano Spezia, Dec 06 2018

Formula

a(n) = log((1/2)*(1+sqrt(1+8*A000396(n))))/log(2). - Artur Jasinski, Sep 23 2008 (under the assumption there are no odd perfect numbers, Joerg Arndt, Feb 23 2014)
a(n) = A000005(A061652(n)). - Omar E. Pol, Aug 26 2009
a(n) = A000120(A000396(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Oct 30 2013

Extensions

Also in the sequence: p = 74207281. - Charles R Greathouse IV, Jan 19 2016
Also in the sequence: p = 77232917. - Eric W. Weisstein, Jan 03 2018
Also in the sequence: p = 82589933. - Gord Palameta, Dec 21 2018
a(46) = 42643801 and a(47) = 43112609, whose ordinal positions in the sequence are now confirmed, communicated by Eric W. Weisstein, Apr 12 2018
a(48) = 57885161, whose ordinal position in the sequence is now confirmed, communicated by Benjamin Przybocki, Jan 05 2022
Also in the sequence: p = 136279841. - Eric W. Weisstein, Oct 21 2024
As of Jan 31 2025, 48 terms are known, and are shown in the DATA section. Four additional numbers are known to be in the sequence, namely 74207281, 77232917, 82589933, and 136279841, but they may not be the next terms. See the GIMP website for the latest information. - N. J. A. Sloane, Jan 31 2025

A090748 Numbers k such that 2^(k+1) - 1 is prime.

Original entry on oeis.org

1, 2, 4, 6, 12, 16, 18, 30, 60, 88, 106, 126, 520, 606, 1278, 2202, 2280, 3216, 4252, 4422, 9688, 9940, 11212, 19936, 21700, 23208, 44496, 86242, 110502, 132048, 216090, 756838, 859432, 1257786, 1398268, 2976220, 3021376, 6972592, 13466916, 20996010, 24036582, 25964950, 30402456, 32582656
Offset: 1

Views

Author

Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 03 2004

Keywords

Comments

Perfect numbers A000396(n) = 2^A133033(n) - 2^a(n), assuming there are no odd perfect numbers. - Omar E. Pol, Feb 24 2008
Number of proper divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n). - Omar E. Pol, Feb 28 2008
Base 2 logarithm of n-th even superperfect number A061652(n). Also base 2 logarithm of n-th superperfect number A019279(n), assuming there are no odd superperfect numbers. - Omar E. Pol, Apr 11 2008
Number of 0's in binary expansion of n-th even perfect number (see A135650). - Omar E. Pol, May 04 2008

Examples

			1 is in the sequence because 2^2 - 1 = 3 is prime.
		

Crossrefs

a(n) = A000043(n) - 1. A000043 is the main entry for this sequence.

Programs

Formula

a(n) = A000043(n) - 1.
2^(a(n) + 1) = A051027(2^a(n)). - Juri-Stepan Gerasimov, Aug 21 2016 [corrected by Jerzy R Borysowicz, Feb 26 2025]

Extensions

Edited, corrected and extended by Robert G. Wilson v, Feb 09 2004
a(39) from Omar E. Pol, Jan 23 2009
a(40)-a(44) from Ivan Panchenko, Apr 11 2018

A133028 Even perfect numbers divided by 2.

Original entry on oeis.org

3, 14, 248, 4064, 16775168, 4294934528, 68719345664, 1152921504069976064, 1329227995784915872327346307976921088, 95780971304118053647396689042151819065498660774084608, 6582018229284824168619876730229361455111736159193471558891864064, 7237005577332262213973186563042994240786838745737417944533177174565599576064
Offset: 1

Views

Author

Omar E. Pol, Oct 20 2007, Apr 23 2008, Apr 28 2009

Keywords

Comments

a(13) has 314 digits and is too large to include. - R. J. Mathar, Oct 23 2007
Largest proper divisor of n-th even perfect number.
Also numbers k such that A000203(k) is divisible 24. - Ctibor O. Zizka, Jun 29 2009

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(2^n-1)=true then 2^(n-2)*(2^n-1) else end if end proc: seq(a(n),n=1..120); # Emeric Deutsch, Oct 24 2007
  • Mathematica
    p = Select[2^Range[400] - 1, PrimeQ]; p*(p+1)/4 (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
    Map[2^(#-2) * (2^# - 1) &, MersennePrimeExponent[Range[12]]] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = A000396(n)/2. - R. J. Mathar, Oct 23 2007 [Assuming there are no odd perfect numbers. - Jianing Song, Sep 17 2022]
a(n) = 2^(A000043(n) - 2) * A000668(n). - Omar E. Pol, Mar 01 2008
a(n) = A032742(A000396(n)), assuming there are no odd perfect numbers.

Extensions

More terms from R. J. Mathar and Emeric Deutsch, Oct 23 2007

A133033 Number of proper divisors of n-th even perfect number.

Original entry on oeis.org

3, 5, 9, 13, 25, 33, 37, 61, 121, 177, 213, 253, 1041, 1213, 2557, 4405, 4561, 6433, 8505, 8845, 19377, 19881, 22425, 39873, 43401, 46417, 88993, 172485, 221005, 264097, 432181, 1513677, 1718865, 2515573, 2796537, 5952441, 6042753, 13945185, 26933833, 41992021, 48073165, 51929901, 60804913
Offset: 1

Views

Author

Omar E. Pol, Oct 27 2007, Feb 23 2008, Apr 28 2009

Keywords

Comments

Perfect numbers: A000396(n) = 2^a(n) - 2^A090748(n), assuming there are no odd perfect numbers.
Also, a(n) is equal to the number of bits in A135650(n), the n-th even perfect number written in base 2.
These are odd numbers k such that 2^((k+1)/2) - 1 is (a Mersenne) prime. - Thomas Ordowski, Apr 20 2019

Crossrefs

Programs

  • Mathematica
    2 * MersennePrimeExponent[Range[48]] - 1 (* Amiram Eldar, Oct 18 2024 *)

Formula

a(n) = A061645(n) - 1.
a(n) = A000043(n) + A090748(n) = 2*A000043(n) - 1 = 2*A090748(n) + 1.

Extensions

a(39)-a(43) from Ivan Panchenko, Apr 12 2018

A160962 Perfect numbers written in base 4.

Original entry on oeis.org

12, 130, 13300, 1333000, 1333333000000, 13333333300000000, 1333333333000000000, 1333333333333333000000000000000, 1333333333333333333333333333333000000000000000000000000000000
Offset: 1

Views

Author

Vladislav-Stepan Malakhovsky and Juri-Stepan Gerasimov, May 31 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Map[FromDigits[IntegerDigits[#, 4]] &, PerfectNumber[Range[10]]] (* Amiram Eldar, Oct 16 2024 *)

Formula

a(n) = A007090(A000396(n)). - Amiram Eldar, Oct 16 2024

Extensions

Edited by N. J. A. Sloane, Jun 07 2009

A161323 Perfect numbers written in base 8.

Original entry on oeis.org

6, 34, 760, 17700, 177770000, 77777600000, 1777777000000, 177777777770000000000, 17777777777777777777700000000000000000000, 77777777777777777777777777777600000000000000000000000000000
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 07 2009

Keywords

Comments

All members end in 0, 1, 4, 5, or 6. Conjecturally, apart from the first two terms, all terms end in 0.

Crossrefs

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,8]]&/@PerfectNumber[Range[10]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 08 2019 *)

Extensions

Edited by Charles R Greathouse IV, Mar 19 2010

A135651 Even superperfect numbers written in base 2.

Original entry on oeis.org

10, 100, 10000, 1000000, 1000000000000, 10000000000000000, 1000000000000000000, 1000000000000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2008

Keywords

Comments

Also, superperfect numbers (A019279) written in base 2 (If there are no odd perfect numbers).
Also, concatenation of "1" and A090748(n) digits "0".
The number of digits of a(n) is equal to A000043(n) and also equal to the number of digits of n-th Mersenne prime written in base 2 (see A117293, A135650).

Examples

			a(3)=10000 because the 3rd even superperfect number A061652(3)=16 and 16 written in base 2 is equal to 10000.
		

Crossrefs

A135656 Perfect numbers divided by 2, written in base 2.

Original entry on oeis.org

11, 1110, 11111000, 111111100000, 111111111111100000000000, 11111111111111111000000000000000, 111111111111111111100000000000000000, 111111111111111111111111111111100000000000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Feb 28 2008

Keywords

Comments

The number of divisors of a(n) is equal to the number of its digits. This number is equal to 2*A000043(n)-2. The number of divisors of a(n) that are powers of 2 is equal to the number of divisors that are multiples of n-th Mersenne prime A000668(n) and this number of divisors is equal to A090748(n). The first digits of a(n) are "1". For n>1 the last digits are "0". The number of digits "1" is equal to A000043(n). The number of digits "0" is equal to A000043(n)-2. The concatenation of digits "1" gives the n-th Mersenne prime written in binary (see A117293(n)). The structure of divisors of a(n) represent a triangle (see example).

Examples

			a(4)=111111100000 because the 4th. perfect number is 8128 and 8128/2=4064 and 4064 written in base 2 is 111111100000. Note that 1111111 is the 4th. Mersenne prime A000668(4)=127, written in base 2.
The structure of divisors of a(4)=111111100000
		

Crossrefs

Perfect numbers divided by 2: A133028. Cf. A000396, A000668, A019279, A090748, A117293, A135650.

Formula

a(n)=A133028(n) written in base 2.

A161496 Number of zeros in n-th even perfect number written in base 16.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 4, 7, 15, 22, 26, 31, 130, 151, 319, 550, 570, 804, 1063, 1105, 2422, 2485, 2803, 4984, 5425, 5802, 11124, 21560, 27625, 33012, 54022, 189209, 214858, 314446, 349567, 744055, 755344, 1743148, 3366729, 5249002, 6009145, 6491237, 7600614, 8145664, 9289166
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 11 2009

Keywords

Crossrefs

Formula

a(n) = floor((A000043(n)-1)/4). - Gerson Washiski Barbosa, May 29 2011

Extensions

Definition changed (inserting the word "even"), a(31) corrected and a(41)-a(45) added by Ivan Panchenko, Aug 04 2018

A211979 Numbers n formed by p 1's followed by p - 1 0's, where p is prime(n).

Original entry on oeis.org

110, 11100, 111110000, 1111111000000, 111111111110000000000, 1111111111111000000000000, 111111111111111110000000000000000, 1111111111111111111000000000000000000, 111111111111111111111110000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2012

Keywords

Examples

			For n = 3, the third prime is 5, so a(3) = 111110000 (five 1's followed by four 0's).
		

Crossrefs

Binary representation of A060286.
a(n) has A076274(n) digits.

Programs

  • Mathematica
    (* Technically this is in base 10 *) Table[10^(Prime[n] - 1)((10^Prime[n] - 1)/9), {n, 20}] (* Alonso del Arte, Dec 12 2012 *)
    FromDigits[Join[PadRight[{},#,1],PadRight[{},#-1,0]]]&/@ Prime[ Range[ 10]] (* Harvey P. Dale, Aug 30 2015 *)
Showing 1-10 of 10 results.