A020492 Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203).
1, 2, 3, 6, 12, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 270, 357, 418, 420, 570, 594, 616, 630, 714, 744, 812, 840, 910, 1045, 1240, 1254, 1485, 1672, 1848, 2090, 2214, 2376, 2436, 2580, 2730, 2970, 3080, 3135, 3339, 3596, 3720, 3828
Offset: 1
Keywords
Examples
sigma(35) = 1+5+7+35 = 48, phi(35) = 24, hence 35 is a term.
References
- D. Chiang, "N's for which phi(N) divides sigma(N)", Mathematical Buds, Chap. VI pp. 53-70 Vol. 3 Ed. H. D. Ruderman, Mu Alpha Theta 1984.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Jud McCranie, 670314 balanced numbers (first 1000 from T. D. Noe, first 10000 from Donovan Johnson)
Crossrefs
Programs
-
Magma
[ n: n in [1..3900] | SumOfDivisors(n) mod EulerPhi(n) eq 0 ]; // Klaus Brockhaus, Nov 09 2008
-
Mathematica
Select[ Range[ 4000 ], IntegerQ[ DivisorSigma[ 1, # ]/EulerPhi[ # ] ]& ] (* Second program: *) Select[Range@ 4000, Divisible[DivisorSigma[1, #], EulerPhi@ #] &] (* Michael De Vlieger, Nov 28 2017 *)
-
PARI
select(n->sigma(n)%eulerphi(n)==0,vector(10^4,i,i)) \\ Charles R Greathouse IV, Jun 20 2012
-
Python
from sympy import totient, divisor_sigma print([n for n in range(1, 4001) if divisor_sigma(n)%totient(n)==0]) # Indranil Ghosh, Jul 06 2017
-
Python
from math import prod from itertools import count, islice from sympy import factorint def A020492_gen(startvalue=1): # generator of terms >= startvalue for m in count(max(startvalue,1)): f = factorint(m) if not prod(p**(e+2)-p for p,e in f.items())%(m*prod((p-1)**2 for p in f)): yield m A020492_list = list(islice(A020492_gen(),20)) # Chai Wah Wu, Aug 12 2024
Extensions
More terms from Farideh Firoozbakht, Nov 28 2005
Comments