cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A020492 Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203).

Original entry on oeis.org

1, 2, 3, 6, 12, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 270, 357, 418, 420, 570, 594, 616, 630, 714, 744, 812, 840, 910, 1045, 1240, 1254, 1485, 1672, 1848, 2090, 2214, 2376, 2436, 2580, 2730, 2970, 3080, 3135, 3339, 3596, 3720, 3828
Offset: 1

Views

Author

Keywords

Comments

The quotient A020492(n)/A002088(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 or zeta(2)^2 [~2.705808084277845]. - Labos Elemer, Sep 20 2004, corrected by Charles R Greathouse IV, Jun 20 2012
If 2^p-1 is prime (a Mersenne prime) then m = 2^(p-2)*(2^p-1) is in the sequence because when p = 2 we get m = 3 and phi(3) divides sigma(3) and for p > 2, phi(m) = 2^(p-2)*(2^(p-1)-1); sigma(m) = (2^(p-1)-1)*2^p hence sigma(m)/phi(m) = 4 is an integer. So for each n, A133028(n) = 2^(A000043(n)-2)*(2^A000043(n)-1) is in the sequence. - Farideh Firoozbakht, Nov 28 2005
Phi and sigma are both multiplicative functions and for this reason if m and n are coprime and included in this sequence then m*n is also in this sequence. - Enrique Pérez Herrero, Sep 05 2010
The quotients sigma(n)/phi(n) are in A023897. - Bernard Schott, Jun 06 2017
There are 544768 balanced numbers < 10^14. - Jud McCranie, Sep 10 2017
a(975807) = 419998185095132. - Jud McCranie, Nov 28 2017

Examples

			sigma(35) = 1+5+7+35 = 48, phi(35) = 24, hence 35 is a term.
		

References

  • D. Chiang, "N's for which phi(N) divides sigma(N)", Mathematical Buds, Chap. VI pp. 53-70 Vol. 3 Ed. H. D. Ruderman, Mu Alpha Theta 1984.

Crossrefs

Positions of 0's in A063514.

Programs

  • Magma
    [ n: n in [1..3900] | SumOfDivisors(n) mod EulerPhi(n) eq 0 ]; // Klaus Brockhaus, Nov 09 2008
    
  • Mathematica
    Select[ Range[ 4000 ], IntegerQ[ DivisorSigma[ 1, # ]/EulerPhi[ # ] ]& ]
    (* Second program: *)
    Select[Range@ 4000, Divisible[DivisorSigma[1, #], EulerPhi@ #] &] (* Michael De Vlieger, Nov 28 2017 *)
  • PARI
    select(n->sigma(n)%eulerphi(n)==0,vector(10^4,i,i)) \\ Charles R Greathouse IV, Jun 20 2012
    
  • Python
    from sympy import totient, divisor_sigma
    print([n for n in range(1, 4001) if divisor_sigma(n)%totient(n)==0]) # Indranil Ghosh, Jul 06 2017
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A020492_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            f = factorint(m)
            if not prod(p**(e+2)-p for p,e in f.items())%(m*prod((p-1)**2 for p in f)):
                yield m
    A020492_list = list(islice(A020492_gen(),20)) # Chai Wah Wu, Aug 12 2024

Extensions

More terms from Farideh Firoozbakht, Nov 28 2005

A134708 Even superperfect numbers divided by 2.

Original entry on oeis.org

1, 2, 8, 32, 2048, 32768, 131072, 536870912, 576460752303423488, 154742504910672534362390528, 40564819207303340847894502572032, 42535295865117307932921825928971026432
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007, Apr 23 2008

Keywords

Comments

a(13) and a(14) have 157 and 183 digits respectively. - R. J. Mathar, Jan 07 2008
Largest proper divisor of n-th even superperfect number A061652(n). Also, largest proper divisor of n-th superperfect number A019279(n), if there are no odd superperfect numbers.
Indices of even hexagonal numbers (A014635) that are also even perfect numbers. - Omar E. Pol, Jan 11 2009

Examples

			a(5) = 2048 because the 5th even superperfect number is 4096 and 4096/2 = 2048.
		

Crossrefs

Programs

  • Maple
    A000043 := proc(n) op(n,[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213]) ; end: A061652 := proc(n) 2^(A000043(n)-1) ; end: A134708 := proc(n) A061652(n)/2 ; end: seq(A134708(n),n=1..14) ; # R. J. Mathar, Jan 07 2008
  • Mathematica
    With[{max = 12}, 2^(MersennePrimeExponent[Range[max]] - 2)] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = A061652(n)/2.
a(n) = 2^(A000043(n)-2). - Omar E. Pol, Mar 01 2008
a(n) = A032742(A061652(n)). Also, a(n) = A032742(A019279(n)), if there are no odd superperfect numbers.
a(n) = Sum_{x=1..n-th superperfect number} x*(-1)^x. - Juri-Stepan Gerasimov, Jul 21 2009

Extensions

More terms from R. J. Mathar, Jan 07 2008

A293391 Integers n such that sigma(n)/phi(n) is a perfect square.

Original entry on oeis.org

1, 14, 30, 105, 248, 264, 418, 714, 1485, 3080, 3135, 3596, 3828, 3956, 4064, 5396, 6678, 8636, 10098, 12648, 20026, 20790, 21318, 22152, 23374, 24882, 25714, 26040, 35074, 35343, 39105, 41656, 43890, 44660, 49938, 55154, 56134, 56536, 61344, 71145, 74613, 86304, 87087, 94944
Offset: 1

Views

Author

Keywords

Comments

From Robert Israel, Dec 12 2017: (Start)
Intersection of A011257 and A020492.
If x and y are coprime members of the sequence, then x*y is in the sequence.
Contains all members of A133028 except 3. (End)

Examples

			sigma(14)=3*8=24, phi(14)=14*(1/2)*(6/7)=6, sigma(14)/phi(14)=2^2, so 14 is in the list.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100000 do
        r := numtheory[sigma](n)/numtheory[phi](n) ;
        if issqr(r) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 07 2017
  • Mathematica
    Select[Range[10^5], IntegerQ@ Sqrt[DivisorSigma[1, #]/EulerPhi[#]] &] (* Michael De Vlieger, Dec 08 2017 *)
  • PARI
    isok(n) = my(q=sigma(n)/eulerphi(n)); issquare(q) && (denominator(q) == 1); \\ Michel Marcus, Dec 07 2017; corrected Sep 21 2019

Formula

a(n) = sigma(n)/phi(n) = m^2, for some integer m.

A139045 Largest proper divisor of the Fibonacci numbers > 1.

Original entry on oeis.org

1, 1, 1, 4, 1, 7, 17, 11, 1, 72, 1, 29, 305, 329, 1, 1292, 113, 2255, 5473, 199, 1, 23184, 15005, 521, 98209, 105937, 1, 416020, 2417, 726103, 1762289, 3571, 1845493, 7465176, 330929, 1056437, 31622993, 34111385, 59369, 133957148, 1, 233802911, 567451585
Offset: 3

Views

Author

Omar E. Pol, Apr 23 2008

Keywords

Comments

See the list of divisors of positive Fibonacci numbers in the triangle A133021.
See the largest proper divisor of n in A032742.
Fibonacci(1)=Fibonacci(2)=1 do not have proper divisors. - Emeric Deutsch, May 18 2008

Examples

			a(9) = 17 because the 9th Fibonacci number is 34 and the divisors of 34 are 1, 2, 17, 34, then the largest proper divisor of 34 is 17.
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): a:=proc(n) options operator, arrow: op(tau(fibonacci(n))-1, divisors(fibonacci(n))) end proc: seq(a(n),n=3..40); # Emeric Deutsch, May 18 2008
    # second Maple program:
    a:= n-> (f-> f/min(numtheory[factorset](f)))((<<0|1>, <1|1>>^n)[1, 2]):
    seq(a(n), n=3..47);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    lpd[n_]:=Divisors[n][[-2]]; lpd/@(Fibonacci[Range[3,40]]) (* Harvey P. Dale, Mar 29 2015 *)

Formula

a(n) = A032742(A000045(n)).
a(n) = A000045(n)/A060383(n). - Alois P. Heinz, Sep 03 2019

Extensions

More terms from Emeric Deutsch, May 18 2008

A134705 a(n) = n-th perfect number divided by 2^n.

Original entry on oeis.org

3, 7, 62, 508, 1048448, 134216704, 1073739776, 9007199250546688, 5192296858534827626278696515534848, 187072209578355573530071658285452771612302071824384
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Examples

			a(3)=62 because the 3rd perfect number is 496 and 2^3=8 and 496/8=62.
		

Crossrefs

Programs

  • Maple
     perfp := [1,2,4,6,12,16,18,30,60,88,106,126,520,606,1278,2202,2280,3216,4252] : A000396 := proc(n) global perfp ; 2^op(n,perfp)*(2^(op(n,perfp)+1)-1) ; end: A134705 := proc(n) A000396(n)/2^n ; end: seq(A134705(n),n=1..12) ; # R. J. Mathar

Formula

a(n)=A000396(n)/(2^n).

Extensions

More terms from R. J. Mathar, Jan 07 2008

A134709 Even superperfect numbers divided by 2, minus 1.

Original entry on oeis.org

0, 1, 7, 31, 2047, 32767, 131071, 536870911, 576460752303423487, 154742504910672534362390527, 40564819207303340847894502572031, 42535295865117307932921825928971026431
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Examples

			a(5)=2047 because the 5th even superperfect number is 4096 and (4096/2)-1=2047.
		

Crossrefs

Formula

a(n) = (A061652(n)/2) - 1.

Extensions

More terms from Jinyuan Wang, Mar 14 2020

A134710 a(n) = n-th even superperfect number divided by 2^n.

Original entry on oeis.org

1, 1, 2, 4, 128, 1024, 2048, 4194304, 2251799813685248, 302231454903657293676544, 39614081257132168796771975168, 20769187434139310514121985316880384
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Comments

a(13) and a(14) have 153 and 179 digits respectively and are too large to include here. - R. J. Mathar, Jan 07 2008

Examples

			a(5) = 128 because the 5th even superperfect number is 4096 and 2^5 = 32 and 4096/32 = 128.
		

Crossrefs

Cf. A000043, A000396, A000668, A019279, A061652 (even superperfect numbers), A133028.

Programs

  • Maple
    A000043 := proc(n) op(n,[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213]) ; end: A061652 := proc(n) 2^(A000043(n)-1) ; end: A134710 := proc(n) A061652(n)/2^n ; end: seq(A134710(n),n=1..14) ; # R. J. Mathar, Jan 07 2008
  • Mathematica
    With[{max = 12}, 2^(MersennePrimeExponent[Range[max]] - Range[max] - 1)] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = A061652(n)/(2^n).
a(n) = 2^(A000043(n)-n-1). - Amiram Eldar, Oct 21 2024

Extensions

More terms from R. J. Mathar, Jan 07 2008

A134712 Base-2 logarithm of (n-th even superperfect number divided by 2^n).

Original entry on oeis.org

0, 0, 1, 2, 7, 10, 11, 22, 51, 78, 95, 114, 507, 592, 1263, 2186, 2263, 3198, 4233, 4402, 9667, 9918, 11189, 19912, 21675, 23182, 44469, 86214, 110473, 132018, 216059, 756806, 859399, 1257752, 1398233, 2976184, 3021339, 6972554, 13466877
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Examples

			a(5) = 7 because the 5th even superperfect number is 4096, 2^5 = 32, 4096/32 = 128 and log_2(128) = 7 (because 2^7 = 128).
		

Crossrefs

Programs

  • Mathematica
    With[{max = 48}, MersennePrimeExponent[Range[max]] - Range[max] - 1] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = log_2(A061652(n)/(2^n)) = A000043(n) - n - 1 = A090748(n) - n.

A134713 Base-2 logarithm of (n-th even superperfect number divided by 2^n), plus 1.

Original entry on oeis.org

1, 1, 2, 3, 8, 11, 12, 23, 52, 79, 96, 115, 508, 593, 1264, 2187, 2264, 3199, 4234, 4403, 9668, 9919, 11190, 19913, 21676, 23183, 44470, 86215, 110474, 132019, 216060, 756807, 859400, 1257753, 1398234, 2976185, 3021340, 6972555, 13466878
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Examples

			a(5) = 8 because the 5th even superperfect number is 4096, 2^5 = 32, 4096/32 = 128, log_2(128) = 7 (because 2^7 = 128) and 7+1 = 8.
		

Crossrefs

Programs

  • Mathematica
    With[{max = 48}, MersennePrimeExponent[Range[max]] - Range[max]] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = 1 + log_2(A061652(n)/(2^n)) = A000043(n) - n = A090748(n) - n + 1.

A135656 Perfect numbers divided by 2, written in base 2.

Original entry on oeis.org

11, 1110, 11111000, 111111100000, 111111111111100000000000, 11111111111111111000000000000000, 111111111111111111100000000000000000, 111111111111111111111111111111100000000000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Feb 28 2008

Keywords

Comments

The number of divisors of a(n) is equal to the number of its digits. This number is equal to 2*A000043(n)-2. The number of divisors of a(n) that are powers of 2 is equal to the number of divisors that are multiples of n-th Mersenne prime A000668(n) and this number of divisors is equal to A090748(n). The first digits of a(n) are "1". For n>1 the last digits are "0". The number of digits "1" is equal to A000043(n). The number of digits "0" is equal to A000043(n)-2. The concatenation of digits "1" gives the n-th Mersenne prime written in binary (see A117293(n)). The structure of divisors of a(n) represent a triangle (see example).

Examples

			a(4)=111111100000 because the 4th. perfect number is 8128 and 8128/2=4064 and 4064 written in base 2 is 111111100000. Note that 1111111 is the 4th. Mersenne prime A000668(4)=127, written in base 2.
The structure of divisors of a(4)=111111100000
		

Crossrefs

Perfect numbers divided by 2: A133028. Cf. A000396, A000668, A019279, A090748, A117293, A135650.

Formula

a(n)=A133028(n) written in base 2.
Showing 1-10 of 19 results. Next