cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A105800 Greatest Fibonacci number that is a proper divisor of the n-th Fibonacci number; a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 5, 1, 8, 1, 13, 5, 21, 1, 34, 1, 55, 13, 89, 1, 144, 5, 233, 34, 377, 1, 610, 1, 987, 89, 1597, 13, 2584, 1, 4181, 233, 6765, 1, 10946, 1, 17711, 610, 28657, 1, 46368, 13, 75025, 1597, 121393, 1, 196418, 89, 317811, 4181, 514229, 1, 832040, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 20 2005

Keywords

Comments

a(A001605(n)) = 1.

Crossrefs

Cf. A046022 (gives the positions of ones).

Programs

  • Mathematica
    nn=70;Join[{1,1},With[{fibs=Fibonacci[Range[nn]]},Table[ Max[ Intersection[ Most[Divisors[fibs[[n]]]],fibs]],{n,3,nn}]]] (* Harvey P. Dale, Apr 10 2012 *)

Formula

From Antti Karttunen, Jan 11 2017: (Start)
a(n) = A280686(A000045(n)).
a(n) = A000045(A032742(n)). [Because A000045 is a divisibility sequence.]
a(A032742(n)) = A280688(n).
(End)

A139044 Smallest prime divisor of the Fibonacci numbers > 1.

Original entry on oeis.org

2, 3, 5, 2, 13, 3, 2, 5, 89, 2, 233, 13, 2, 3, 1597, 2, 37, 3, 2, 89, 28657, 2, 5, 233, 2, 3, 514229, 2, 557, 3, 2, 1597, 5, 2, 73, 37, 2, 3, 2789, 2, 433494437, 3, 2, 139, 2971215073, 2, 13, 5, 2, 3, 953, 2, 5, 3, 2, 59, 353, 2, 4513, 557, 2, 3, 5, 2, 269, 3, 2, 5, 6673, 2
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2008

Keywords

Comments

Fibonacci number > 1, divided by its largest proper divisor.

Crossrefs

Programs

  • Magma
    [Minimum(PrimeDivisors(Fibonacci(n+2))): n in [1..70]]; // Vincenzo Librandi, Dec 24 2016
  • Maple
    with(numtheory): with(combinat): a:=proc(n) options operator, arrow: op(2, divisors(fibonacci(n))) end proc: seq(a(n),n=3..60); # Emeric Deutsch, May 02 2008
  • Mathematica
    First[First[FactorInteger[ # ]]]&/@Fibonacci[Range[3,40]] (* Harvey P. Dale, Apr 30 2008 *)
  • PARI
    a(n) = factor(fibonacci(n+2))[1,1]; \\ Michel Marcus, Nov 15 2014
    

Formula

a(n) = A000045(n+2)/A032742(A000045(n+2)) = A000045(n+2)/A139045(n).
a(n) = A020639(A000045(n+2)). - Michel Marcus, Nov 15 2014
a(n) = A060383(n+2). - Alois P. Heinz, Oct 11 2015

Extensions

More terms from Emeric Deutsch and Harvey P. Dale, May 02 2008
More terms from Vincenzo Librandi, Dec 24 2016

A386994 Number of 2-dense sublists of divisors of the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 4, 2, 4, 2, 1, 2, 4, 4, 8, 2, 3, 4, 8, 4, 4, 2, 1, 6, 4, 4, 12, 2, 1, 4, 16, 4, 4, 8, 1, 8, 8, 4, 3, 4, 1, 2, 11, 6, 8, 2, 1, 8, 10, 4, 12, 4, 3, 13, 5, 10, 8, 4, 1, 4, 8, 10, 17, 8, 7, 8, 20, 9, 15, 4, 1, 4, 16, 18, 24, 15, 7, 4, 3, 5
Offset: 0

Views

Author

Omar E. Pol, Aug 27 2025

Keywords

Comments

In a sublist of divisors of k the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of k.
The 2-dense sublists of divisors of k are the maximal sublists whose terms increase by a factor of at most 2.

Examples

			For n = 18 the 18th Fibonacci number is 2584. The list of divisors of 2584 is [1, 2, 4, 8, 17, 19, 34, 38, 68, 76, 136, 152, 323, 646, 1292, 2584]. There are three 2-dense sublists of divisors of 2584, they are [1, 2, 4, 8], [17, 19, 34, 38, 68, 76, 136, 152] and [323, 646, 1292, 2584], so a(18) = 3.
		

Crossrefs

Programs

  • Mathematica
    A386994[n_] := Length[Split[Divisors[Fibonacci[n]], #2 <= 2*# &]];
    Array[A386994, 100, 0] (* Paolo Xausa, Sep 02 2025 *)

Formula

a(n) = A237271(A000045(n)), n >= 1. (conjectured).

Extensions

More terms from Alois P. Heinz, Aug 27 2025

A139227 Array read by rows: row n lists the proper divisors of n-th Fibonacci number A000045(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 1, 3, 7, 1, 2, 17, 1, 5, 11, 1, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 1, 1, 13, 29, 1, 2, 5, 10, 61, 122, 305, 1, 3, 7, 21, 47, 141, 329, 1, 1, 2, 4, 8, 17, 19, 34, 38, 68, 76, 136, 152, 323, 646, 1292
Offset: 3

Views

Author

Omar E. Pol, Apr 28 2008

Keywords

Examples

			Row ....... Array begins
===========================================================
3 ......... 1
4 ......... 1
5 ......... 1
6 ......... 1, 2, 4
7 ......... 1
8 ......... 1, 3, 7
9 ......... 1, 2, 17
10 ........ 1, 5, 11
11 ........ 1
12 ........ 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72
13 ........ 1
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Most@ Divisors@ Fibonacci@ n; Flatten@ Array[f, 16, 3] (* Robert G. Wilson v *)
Showing 1-4 of 4 results.