cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A280690 a(n) = A000045(n) / A105800(n); the n-th Fibonacci number divided by its largest Fibonacci proper divisor.

Original entry on oeis.org

1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 18, 233, 29, 122, 47, 1597, 76, 4181, 123, 842, 199, 28657, 322, 15005, 521, 5777, 843, 514229, 1364, 1346269, 2207, 39602, 3571, 709805, 5778, 24157817, 9349, 271442, 15127, 165580141, 24476, 433494437, 39603, 1860497, 64079, 2971215073, 103682, 598364773, 167761, 12752042, 271443
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Comments

A000045 is a divisibility sequence.

Crossrefs

Formula

a(n) = A000045(n) / A105800(n) = A000045(n) / A000045(A032742(n)).
a(n) = A280687(A000045(n)).
Other identities. For all n >= 1:
a(A032742(n)) = A280689(n).

A280688 a(n) = A000045(A054576(n))= A280686(A105800(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 5, 1, 1, 1, 8, 1, 1, 2, 13, 1, 5, 1, 21, 1, 1, 1, 34, 1, 1, 1, 55, 1, 13, 1, 89, 5, 1, 1, 144, 1, 5, 1, 233, 1, 34, 1, 377, 1, 1, 1, 610, 1, 1, 13, 987, 1, 89, 1, 1597, 1, 13, 1, 2584, 1, 1, 5, 4181, 1, 233, 1, 6765, 34, 1, 1, 10946, 1, 1, 1, 17711, 1, 610, 1, 28657, 1, 1, 1, 46368, 1, 13, 89, 75025, 1, 1597
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Crossrefs

Formula

a(n) = A000045(A054576(n)).
a(n) = A280686(A105800(n)).
a(n) = A105800(A032742(n)).

A076984 Number of Fibonacci numbers that are divisors of the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 2, 5, 2, 3, 4, 4, 2, 5, 2, 5, 4, 3, 2, 7, 3, 3, 4, 5, 2, 7, 2, 5, 4, 3, 4, 8, 2, 3, 4, 7, 2, 7, 2, 5, 6, 3, 2, 9, 3, 5, 4, 5, 2, 7, 4, 7, 4, 3, 2, 11, 2, 3, 6, 6, 4, 7, 2, 5, 4, 7, 2, 11, 2, 3, 6, 5, 4, 7, 2, 9, 5, 3, 2, 11, 4, 3, 4, 7, 2, 11, 4, 5, 4, 3, 4, 11, 2, 5, 6, 8, 2, 7, 2
Offset: 1

Views

Author

Amarnath Murthy, Oct 25 2002

Keywords

Comments

a(A001605(n)) = 2; a(A105802(n)) = n.
It is well known that if k is a divisor of n then F(k) divides F(n). Hence if n has d divisors, one expects that a(n)=d. However because F(1)=F(2)=1, there is one fewer Fibonacci divisor when n is even. So for even n, a(n)=d-1. - T. D. Noe, Jan 18 2006

Examples

			n=12, A000045(12)=144: 5 of the 15 divisors of 144 are also Fibonacci numbers, a(12) = #{1, 2, 3, 8, 144} = 5.
		

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):a[1] := 1:for i from 2 to 229 do s := 0:for j from 2 to i do if((fibonacci(i) mod fibonacci(j))=0) then s := s+1:fi:od:a[i] := s:od:seq(a[l],l=2..229);
  • Mathematica
    Table[s=DivisorSigma[0, n]; If[OddQ[n], s, s-1], {n, 100}] (Noe)
  • PARI
    {a(n)=if(n<1, 0, numdiv(n)+n%2-1)} /* Michael Somos, Sep 03 2006 */
    
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n,d, d!=2))} /* Michael Somos, Sep 03 2006 */

Formula

a(n) = A023645(n) + 1. - T. D. Noe, Jan 18 2006
a(n) = tau(n) - [n is even] = A000005(n) - A059841(n). Proof: gcd(Fib(m), Fib(n)) = Fib(gcd(m, n)) and Fib(2) = 1. - Olivier Wittenberg, following a conjecture of Ralf Stephan, Sep 28 2004
The number of divisors of n excluding 2.
a(2n) = A066660(n). a(2n-1) = A099774(n). - Michael Somos, Sep 03 2006
a(3*2^(Prime(n-1)-1)) = 2n + 1 for n > 3. a(3*2^A068499[n]) = 2n + 1, where A068499(n) = {1,2,3,4,6,10,12,16,18,...}. - Alexander Adamchuk, Sep 15 2006

Extensions

Corrected and extended by Sascha Kurz, Jan 26 2003
Edited by N. J. A. Sloane, Sep 14 2006. Some of the comments and formulas may need to be adjusted to reflect the new offset.

A280686 Largest Fibonacci proper divisor of n, a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 3, 1, 2, 5, 8, 1, 3, 1, 5, 3, 2, 1, 8, 5, 13, 3, 2, 1, 5, 1, 8, 3, 2, 5, 3, 1, 2, 13, 8, 1, 21, 1, 2, 5, 2, 1, 8, 1, 5, 3, 13, 1, 3, 5, 8, 3, 2, 1, 5, 1, 2, 21, 8, 13, 3, 1, 34, 3, 5, 1, 8, 1, 2, 5, 2, 1, 13, 1, 8, 3, 2, 1, 21, 5, 2, 3, 8, 1, 5, 13, 2, 3, 2, 5, 8, 1, 2, 3, 5, 1, 34, 1, 13, 21, 2, 1, 3, 1, 55, 3, 8, 1, 3, 5, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Comments

For n > 1, a(n) = greatest Fibonacci number that divides n and is less than n.

Examples

			For n=3, the greatest Fibonacci number that divides 3 and is less than 3 is A000045(1)=A000045(2)=1, thus a(3) = 1.
For n=20, the greatest Fibonacci number that divides 20 and is less than 20 is A000045(5)=5, thus a(20) = 5.
For n=21, the greatest Fibonacci number that divides 21 and is less than 21 is A000045(4)=3, thus a(21) = 3.
		

Crossrefs

Cf. A001690 (gives the positions n > 1 where this sequence and A054494 obtain equal values).

Programs

  • PARI
    a(n)=my(r=1,lim=if(n%2,n\3,n/2),a=1,b=2); while(bCharles R Greathouse IV, Jun 20 2017
  • Scheme
    ;; A stand-alone program:
    (define (A280686 n) (let loop ((f1 1) (f2 1) (lpd 1)) (cond ((>= f2 n) lpd) ((zero? (modulo n f2)) (loop f2 (+ f1 f2) f2)) (else (loop f2 (+ f1 f2) lpd)))))
    

Formula

a(n) = n / A280687(n).
Other identities. For all n >= 1:
a(A000045(n)) = A105800(n).
a(A001690(n)) = A054494(A001690(n)).

A280689 a(n) = A000045(A032742(n)) / A000045(A054576(n)), where A000045(n) gives the n-th Fibonacci number, A032742(n) = the largest proper divisor of n, and A054576(n) = A032742(A032742(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 5, 1, 4, 1, 13, 5, 7, 1, 17, 1, 11, 13, 89, 1, 18, 5, 233, 17, 29, 1, 122, 1, 47, 89, 1597, 13, 76, 1, 4181, 233, 123, 1, 842, 1, 199, 122, 28657, 1, 322, 13, 15005, 1597, 521, 1, 5777, 89, 843, 4181, 514229, 1, 1364, 1, 1346269, 842, 2207, 233, 39602, 1, 3571, 28657, 709805, 1, 5778, 1, 24157817, 15005, 9349, 89, 271442, 1, 15127, 5777
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Comments

A000045 is a divisibility sequence, which guarantees that the result of the division is an integer.

Crossrefs

Programs

Formula

a(n) = A105800(n) / A280688(n) = A105800(n) / A105800(A032742(n)).
a(n) = A000045(A032742(n)) / A000045(A054576(n)).
a(n) = A280690(A032742(n)).

A280699 Greatest Lucas number that is a divisor of the n-th Fibonacci number, a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 2, 3, 1, 4, 1, 7, 2, 11, 1, 18, 1, 29, 2, 47, 1, 76, 1, 123, 2, 199, 1, 322, 1, 521, 2, 843, 1, 1364, 1, 2207, 2, 3571, 1, 5778, 1, 9349, 2, 15127, 1, 24476, 1, 39603, 2, 64079, 1, 103682, 1, 167761, 2, 271443, 1, 439204, 1, 710647, 2, 1149851, 1, 1860498, 1, 3010349, 2, 4870847, 1, 7881196, 1, 12752043, 2, 20633239, 1, 33385282, 1, 54018521, 2, 87403803
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Comments

The even bisection is almost certainly A000204. Consider for example the well-known formula L(n)*F(n) = F(2n) = A001906(n).

Crossrefs

Programs

Formula

a(n) = A280694(A000045(n)).

A280698 Greatest Lucas number that is a proper divisor of the n-th Lucas number, a(1) = 1.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 4, 3, 1, 7, 1, 3, 11, 1, 1, 18, 1, 7, 29, 3, 1, 47, 11, 3, 76, 7, 1, 123, 1, 1, 199, 3, 29, 322, 1, 3, 521, 47, 1, 843, 1, 7, 1364, 3, 1, 2207, 29, 123, 3571, 7, 1, 5778, 199, 47, 9349, 3, 1, 15127, 1, 3, 24476, 1, 521, 39603, 1, 7, 64079, 843, 1, 103682, 1, 3, 167761, 7, 199, 271443, 1, 2207, 439204, 3, 1, 710647, 3571, 3, 1149851, 47, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A280696(A000204(n)).
Showing 1-7 of 7 results.