cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A105800 Greatest Fibonacci number that is a proper divisor of the n-th Fibonacci number; a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 5, 1, 8, 1, 13, 5, 21, 1, 34, 1, 55, 13, 89, 1, 144, 5, 233, 34, 377, 1, 610, 1, 987, 89, 1597, 13, 2584, 1, 4181, 233, 6765, 1, 10946, 1, 17711, 610, 28657, 1, 46368, 13, 75025, 1597, 121393, 1, 196418, 89, 317811, 4181, 514229, 1, 832040, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 20 2005

Keywords

Comments

a(A001605(n)) = 1.

Crossrefs

Cf. A046022 (gives the positions of ones).

Programs

  • Mathematica
    nn=70;Join[{1,1},With[{fibs=Fibonacci[Range[nn]]},Table[ Max[ Intersection[ Most[Divisors[fibs[[n]]]],fibs]],{n,3,nn}]]] (* Harvey P. Dale, Apr 10 2012 *)

Formula

From Antti Karttunen, Jan 11 2017: (Start)
a(n) = A280686(A000045(n)).
a(n) = A000045(A032742(n)). [Because A000045 is a divisibility sequence.]
a(A032742(n)) = A280688(n).
(End)

A280694 Largest Lucas number (A000032) dividing n.

Original entry on oeis.org

1, 2, 3, 4, 1, 3, 7, 4, 3, 2, 11, 4, 1, 7, 3, 4, 1, 18, 1, 4, 7, 11, 1, 4, 1, 2, 3, 7, 29, 3, 1, 4, 11, 2, 7, 18, 1, 2, 3, 4, 1, 7, 1, 11, 3, 2, 47, 4, 7, 2, 3, 4, 1, 18, 11, 7, 3, 29, 1, 4, 1, 2, 7, 4, 1, 11, 1, 4, 3, 7, 1, 18, 1, 2, 3, 76, 11, 3, 1, 4, 3, 2, 1, 7, 1, 2, 29, 11, 1, 18, 7, 4, 3, 47, 1, 4, 1, 7, 11, 4, 1, 3, 1, 4, 7, 2, 1, 18, 1, 11, 3, 7, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Crossrefs

Cf. A057854 (gives the positions n > 1 where this sequence and A280696 obtain equal values).

Programs

  • Scheme
    ;; A stand-alone program:
    (define (A280694 n) (let loop ((l1 1) (l2 3) (lpd 1)) (cond ((> l1 n) (if (and (= 1 lpd) (even? n)) 2 lpd)) ((zero? (modulo n l1)) (loop l2 (+ l1 l2) l1)) (else (loop l2 (+ l1 l2) lpd)))))

Formula

a(n) = n / A280695(n).
Other identities. For all n >= 1:
a(A000032(n)) = A000032(n).
a(A057854(n)) = A280696(A057854(n)).
a(A000045(n)) = A280699(n).

A280696 Largest Lucas proper divisor of n, a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 2, 1, 4, 1, 7, 3, 4, 1, 3, 1, 4, 7, 11, 1, 4, 1, 2, 3, 7, 1, 3, 1, 4, 11, 2, 7, 18, 1, 2, 3, 4, 1, 7, 1, 11, 3, 2, 1, 4, 7, 2, 3, 4, 1, 18, 11, 7, 3, 29, 1, 4, 1, 2, 7, 4, 1, 11, 1, 4, 3, 7, 1, 18, 1, 2, 3, 4, 11, 3, 1, 4, 3, 2, 1, 7, 1, 2, 29, 11, 1, 18, 7, 4, 3, 47, 1, 4, 1, 7, 11, 4, 1, 3, 1, 4, 7, 2, 1, 18, 1, 11, 3, 7, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Comments

For n > 1, a(n) = greatest Lucas number (A000032) that divides n and is less than n.

Crossrefs

Cf. A057854 (gives the positions n > 1 where this sequence and A280694 obtain equal values).

Programs

  • Scheme
    ;; A stand-alone program:
    (define (A280696 n) (let loop ((l1 1) (l2 3) (lpd 1)) (cond ((>= l1 n) (if (and (= 1 lpd) (even? n) (> n 2)) 2 lpd)) ((zero? (modulo n l1)) (loop l2 (+ l1 l2) l1)) (else (loop l2 (+ l1 l2) lpd)))))

Formula

a(n) = n / A280697(n).
Other identities. For all n >= 1:
a(A057854(n)) = A280694(A057854(n)).
a(A000204(n)) = A280698(n).

A280698 Greatest Lucas number that is a proper divisor of the n-th Lucas number, a(1) = 1.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 4, 3, 1, 7, 1, 3, 11, 1, 1, 18, 1, 7, 29, 3, 1, 47, 11, 3, 76, 7, 1, 123, 1, 1, 199, 3, 29, 322, 1, 3, 521, 47, 1, 843, 1, 7, 1364, 3, 1, 2207, 29, 123, 3571, 7, 1, 5778, 199, 47, 9349, 3, 1, 15127, 1, 3, 24476, 1, 521, 39603, 1, 7, 64079, 843, 1, 103682, 1, 3, 167761, 7, 199, 271443, 1, 2207, 439204, 3, 1, 710647, 3571, 3, 1149851, 47, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A280696(A000204(n)).
Showing 1-4 of 4 results.