cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A105800 Greatest Fibonacci number that is a proper divisor of the n-th Fibonacci number; a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 5, 1, 8, 1, 13, 5, 21, 1, 34, 1, 55, 13, 89, 1, 144, 5, 233, 34, 377, 1, 610, 1, 987, 89, 1597, 13, 2584, 1, 4181, 233, 6765, 1, 10946, 1, 17711, 610, 28657, 1, 46368, 13, 75025, 1597, 121393, 1, 196418, 89, 317811, 4181, 514229, 1, 832040, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 20 2005

Keywords

Comments

a(A001605(n)) = 1.

Crossrefs

Cf. A046022 (gives the positions of ones).

Programs

  • Mathematica
    nn=70;Join[{1,1},With[{fibs=Fibonacci[Range[nn]]},Table[ Max[ Intersection[ Most[Divisors[fibs[[n]]]],fibs]],{n,3,nn}]]] (* Harvey P. Dale, Apr 10 2012 *)

Formula

From Antti Karttunen, Jan 11 2017: (Start)
a(n) = A280686(A000045(n)).
a(n) = A000045(A032742(n)). [Because A000045 is a divisibility sequence.]
a(A032742(n)) = A280688(n).
(End)

A076985 Smallest Fibonacci numbers having exactly n Fibonacci divisors.

Original entry on oeis.org

1, 2, 8, 610, 144, 1134903170, 46368, 14930352, 4807526976, 1952132532477489958194625524584538730388053593825001030592563956919572392152809678530, 1548008755920, 303124944601307480151388995590175408058857436768033423077509087810
Offset: 1

Views

Author

Amarnath Murthy, Oct 25 2002

Keywords

Comments

a(n) = A000045(A105802(n)). - Reinhard Zumkeller, Apr 20 2005

Examples

			a(5) = 144 and the Fibonacci divisors are 1, 2, 3, 8 and 144.
		

Crossrefs

Cf. A076984.

Extensions

More terms from Sascha Kurz, Jan 26 2003
a(12) from Reinhard Zumkeller, Apr 20 2005
Typo in data corrected by Sean A. Irvine, Apr 24 2025

A105802 Smallest m such that the m-th Fibonacci number has exactly n divisors that are also Fibonacci numbers.

Original entry on oeis.org

1, 3, 6, 15, 12, 45, 24, 36, 48, 405, 60, 315, 192, 144, 120, 945, 180, 1575, 240, 576, 3072, 295245, 360, 1296, 12288, 900, 960, 25515, 720, 14175, 840, 9216, 196608, 5184, 1260, 17325, 786432, 36864, 1680, 31185, 2880, 127575, 15360, 3600, 99225
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 20 2005

Keywords

Comments

A076985(n) = A000045(a(n)); A076984(a(n)) = n.

Examples

			n=6: a(6) = 45, A076985(6) = A000045(45) = 1134903170,
A076984(45) = #{1,2,5,34,109441,1134903170} = #{fib(1),fib(2),fib(5),fib(9),fib(21),fib(45)} = 6.
		

Crossrefs

Cf. A068499.

Programs

  • Mathematica
    t=Table[s=DivisorSigma[0, n]; If[OddQ[n], s, s-1], {n, 1000000}]; lst={}; n=1; While[pos=Flatten[Position[t, n, 1, 1]]; Length[pos]>0, AppendTo[lst, pos[[1]]]; n++ ]; lst (Noe)

Formula

Conjecture: a(2k+1) = 3*2^(Prime[k-1]-1) for k>3. It appears that a(2k+1) = 3*2^k for k = {1,2,3,4,6,10,12,16,18,...} = A068499[n] Numbers n such that n! reduced modulo (n+1) is not zero. - Alexander Adamchuk, Sep 15 2006

Extensions

More terms from T. D. Noe, Jan 18 2006

A356122 Number of Lucas divisors of the n-th Lucas number.

Original entry on oeis.org

2, 1, 2, 3, 2, 2, 4, 2, 2, 4, 3, 2, 4, 2, 3, 5, 2, 2, 5, 2, 3, 5, 3, 2, 4, 3, 3, 5, 3, 2, 6, 2, 2, 5, 3, 4, 5, 2, 3, 5, 3, 2, 6, 2, 3, 7, 3, 2, 4, 3, 4, 5, 3, 2, 6, 4, 3, 5, 3, 2, 6, 2, 3, 7, 2, 4, 6, 2, 3, 5, 5, 2, 5, 2, 3, 7, 3, 4, 6, 2, 3, 6, 3, 2, 6, 4, 3, 5, 3, 2, 8, 4, 3, 5, 3, 4, 4, 2, 4, 7
Offset: 0

Views

Author

Michel Marcus, Jul 27 2022

Keywords

Crossrefs

Cf. A076984 (similar for Fibonacci numbers).

Programs

  • PARI
    L(n)=fibonacci(n+1)+fibonacci(n-1); \\ A000032
    isld(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); }; \\ A102460
    nbld(n) = sumdiv(n, d, isld(d)); \\ A304092
    a(n) = nbld(L(n));
    
  • PARI
    a(n) = if(n==1, return(1)); my(k=fibonacci(n+1)+fibonacci(n-1),c=0,x=2,y=1); while(x <= k, if(k%x == 0, c++); [x,y]=[y,x+y]); c; \\ Daniel Suteu, Aug 25 2022

Formula

a(n) = A304092(A000032(n)).

A062558 Number of nonisomorphic cyclic subgroups of dihedral group with 2n elements.

Original entry on oeis.org

2, 2, 3, 3, 3, 4, 3, 4, 4, 4, 3, 6, 3, 4, 5, 5, 3, 6, 3, 6, 5, 4, 3, 8, 4, 4, 5, 6, 3, 8, 3, 6, 5, 4, 5, 9, 3, 4, 5, 8, 3, 8, 3, 6, 7, 4, 3, 10, 4, 6, 5, 6, 3, 8, 5, 8, 5, 4, 3, 12, 3, 4, 7, 7, 5, 8, 3, 6, 5, 8, 3, 12, 3, 4, 7, 6, 5, 8, 3, 10, 6, 4, 3, 12, 5, 4, 5, 8, 3, 12, 5, 6, 5, 4, 5, 12, 3, 6, 7, 9, 3
Offset: 1

Views

Author

Vladeta Jovovic, Jul 03 2001

Keywords

Crossrefs

Cf. A000005, A000045, A023645, A062249 (labeled case).
One more than A076984.

Programs

Formula

a(n) = A000005(n) + A000035(n) = tau(n)+(n mod 2), where tau(n) = the number of divisors of n.
Showing 1-5 of 5 results.