cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A060383 a(1) = a(2) = 1; for n >2, a(n) = smallest prime factor of n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 13, 3, 2, 5, 89, 2, 233, 13, 2, 3, 1597, 2, 37, 3, 2, 89, 28657, 2, 5, 233, 2, 3, 514229, 2, 557, 3, 2, 1597, 5, 2, 73, 37, 2, 3, 2789, 2, 433494437, 3, 2, 139, 2971215073, 2, 13, 5, 2, 3, 953, 2, 5, 3, 2, 59, 353, 2, 4513, 557, 2, 3, 5, 2, 269, 3, 2, 5
Offset: 1

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Examples

			For n=82: F(82) = 2789*59369*370248451, so a(82)=2789.
		

Crossrefs

Programs

  • Magma
    [1,1] cat [Minimum(PrimeDivisors(Fibonacci(n))): n in [3..70]]; // Vincenzo Librandi, Dec 25 2016
  • Mathematica
    f[n_] := (FactorInteger@ Fibonacci@ n)[[1,1]]; Array[f, 70] (* Robert G. Wilson v, Jul 07 2007 *)
  • PARI
    a(n) = if ((f=fibonacci(n))==1, 1, factor(f)[1,1]); \\ Michel Marcus, Nov 15 2014
    

Formula

a(n) = A020639(A000045(n)). - Michel Marcus, Nov 15 2014

Extensions

Better definition from Omar E. Pol, Apr 25 2008

A280104 a(n) = smallest prime factor of n-th Lucas number A000032(n), or 1 if there are none.

Original entry on oeis.org

2, 1, 3, 2, 7, 11, 2, 29, 47, 2, 3, 199, 2, 521, 3, 2, 2207, 3571, 2, 9349, 7, 2, 3, 139, 2, 11, 3, 2, 7, 59, 2, 3010349, 1087, 2, 3, 11, 2, 54018521, 3, 2, 47, 370248451, 2, 6709, 7, 2, 3, 6643838879, 2, 29, 3, 2, 7, 119218851371, 2, 11, 47, 2, 3, 709, 2
Offset: 0

Views

Author

Vincenzo Librandi, Dec 26 2016

Keywords

Comments

From Robert Israel, Jan 05 2017: (Start)
If m and n are odd, m > 1 and m | n, then a(n) <= a(m).
a(n) = 2 if and only if 3 | n.
a(n) = 3 if and only if n is in A091999.
a(n) is never 5.
a(n) = 7 if and only if n is in A259755.
a(n) = A000032(n) if and only if n is in A001606.
(End)

Crossrefs

Cf. A000032, A001606, A020639, A079451 (same for largest prime factor), A091999, A139044, A144293, A259755, A279623.
Column k=2 of A238899 (for n>=2).

Programs

  • Magma
    [2,1] cat [Minimum(PrimeDivisors(Lucas(n))): n in [2..60]];
    
  • Maple
    lucas:= n -> combinat:-fibonacci(n+1)+combinat:-fibonacci(n-1):
    spf:= proc(n) local F;
      F:= remove(hastype,ifactors(n,easy)[2],symbol);
      if F <> [] then return min(seq(f[1],f=F)) fi;
    min(numtheory:-factorsec(n))
    end proc:
    spf(1):= 1:
    map(spf @ lucas, [$0..200]); # Robert Israel, Jan 05 2017
  • Mathematica
    f[n_]:=(FactorInteger@LucasL@n)[[1, 1]]; Array[f, 60, 0]
  • PARI
    a000032(n) = fibonacci(n+1)+fibonacci(n-1)
    a(n) = if(a000032(n-1)==1, 1, factor(a000032(n-1))[1, 1]) \\ Felix Fröhlich, Dec 26 2016

Formula

a(n) = A020639(A000032(n)). - Felix Fröhlich, Dec 26 2016

Extensions

Offset changed from Bruno Berselli, Dec 27 2016

A152765 Smallest prime divisor of Catalan number A000108(n), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Omar E. Pol, Dec 15 2008, Jan 03 2009

Keywords

Comments

a(n) <> 2 iff n = 2^k - 1 (A000225). In fact for k>1, a(2^k-1): 5, 3, 3, 7, 3, 3, 7, 3, 3, 3, 3, 3, 3, ..., . (A120275) - Robert G. Wilson v, Nov 14 2015

Crossrefs

Programs

  • Magma
    [Minimum(PrimeDivisors(Catalan(n))): n in [2..100]]; // Vincenzo Librandi, Jan 04 2017
  • Mathematica
    FactorInteger[#][[1,1]]&/@CatalanNumber[Range[2,80]] (* Harvey P. Dale, Oct 08 2014 *)
  • PARI
    a(n) = if (n<=1, 1, factor(binomial(2*n, n)/(n+1))[1, 1]); \\ Michel Marcus, Nov 14 2015; corrected Jun 13 2022
    
  • PARI
    A152765(n) = if(n<2,1,my(c=binomial(2*n, n)/(n+1)); forprime(p=2, oo, if(!(c%p),return(p)))); \\ Antti Karttunen, Jan 12 2019
    

Formula

a(n) = A020639(A000108(n)). - Michel Marcus, Nov 14 2015

Extensions

Terms a(0) = a(1) = 1 prepended and more terms added by Antti Karttunen, Jan 12 2019

A279623 a(n) = smallest prime factor of n-th Bell number, or 1 if there are none.

Original entry on oeis.org

1, 1, 2, 5, 3, 2, 7, 877, 2, 3, 5, 2, 37, 27644437, 2, 5, 241, 2, 7, 271, 2, 3, 3, 2, 3, 13, 2, 47, 5, 2, 3, 11, 2, 5694673, 3, 2, 29, 3, 2, 6353, 3221, 2, 35742549198872617291353508656626642567, 3, 2, 5, 5, 2, 3, 7615441337805454611187, 2
Offset: 0

Views

Author

Vincenzo Librandi, Dec 25 2016

Keywords

Crossrefs

Programs

  • Magma
    [1,1] cat [Minimum(PrimeDivisors(Bell(n))): n in [2..50]];
  • Mathematica
    f[n_] := (FactorInteger@ BellB@ n)[[1, 1]]; Array[f, 50, 0]

Formula

a(n) = A020639(A000110(n)). - Robert Israel, Dec 25 2016

A139227 Array read by rows: row n lists the proper divisors of n-th Fibonacci number A000045(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 1, 3, 7, 1, 2, 17, 1, 5, 11, 1, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 1, 1, 13, 29, 1, 2, 5, 10, 61, 122, 305, 1, 3, 7, 21, 47, 141, 329, 1, 1, 2, 4, 8, 17, 19, 34, 38, 68, 76, 136, 152, 323, 646, 1292
Offset: 3

Views

Author

Omar E. Pol, Apr 28 2008

Keywords

Examples

			Row ....... Array begins
===========================================================
3 ......... 1
4 ......... 1
5 ......... 1
6 ......... 1, 2, 4
7 ......... 1
8 ......... 1, 3, 7
9 ......... 1, 2, 17
10 ........ 1, 5, 11
11 ........ 1
12 ........ 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72
13 ........ 1
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Most@ Divisors@ Fibonacci@ n; Flatten@ Array[f, 16, 3] (* Robert G. Wilson v *)
Showing 1-5 of 5 results.