cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280104 a(n) = smallest prime factor of n-th Lucas number A000032(n), or 1 if there are none.

Original entry on oeis.org

2, 1, 3, 2, 7, 11, 2, 29, 47, 2, 3, 199, 2, 521, 3, 2, 2207, 3571, 2, 9349, 7, 2, 3, 139, 2, 11, 3, 2, 7, 59, 2, 3010349, 1087, 2, 3, 11, 2, 54018521, 3, 2, 47, 370248451, 2, 6709, 7, 2, 3, 6643838879, 2, 29, 3, 2, 7, 119218851371, 2, 11, 47, 2, 3, 709, 2
Offset: 0

Views

Author

Vincenzo Librandi, Dec 26 2016

Keywords

Comments

From Robert Israel, Jan 05 2017: (Start)
If m and n are odd, m > 1 and m | n, then a(n) <= a(m).
a(n) = 2 if and only if 3 | n.
a(n) = 3 if and only if n is in A091999.
a(n) is never 5.
a(n) = 7 if and only if n is in A259755.
a(n) = A000032(n) if and only if n is in A001606.
(End)

Crossrefs

Cf. A000032, A001606, A020639, A079451 (same for largest prime factor), A091999, A139044, A144293, A259755, A279623.
Column k=2 of A238899 (for n>=2).

Programs

  • Magma
    [2,1] cat [Minimum(PrimeDivisors(Lucas(n))): n in [2..60]];
    
  • Maple
    lucas:= n -> combinat:-fibonacci(n+1)+combinat:-fibonacci(n-1):
    spf:= proc(n) local F;
      F:= remove(hastype,ifactors(n,easy)[2],symbol);
      if F <> [] then return min(seq(f[1],f=F)) fi;
    min(numtheory:-factorsec(n))
    end proc:
    spf(1):= 1:
    map(spf @ lucas, [$0..200]); # Robert Israel, Jan 05 2017
  • Mathematica
    f[n_]:=(FactorInteger@LucasL@n)[[1, 1]]; Array[f, 60, 0]
  • PARI
    a000032(n) = fibonacci(n+1)+fibonacci(n-1)
    a(n) = if(a000032(n-1)==1, 1, factor(a000032(n-1))[1, 1]) \\ Felix Fröhlich, Dec 26 2016

Formula

a(n) = A020639(A000032(n)). - Felix Fröhlich, Dec 26 2016

Extensions

Offset changed from Bruno Berselli, Dec 27 2016

A377801 Irregular triangle read by rows: row n lists divisors of n-th Bell number.

Original entry on oeis.org

1, 1, 1, 2, 1, 5, 1, 3, 5, 15, 1, 2, 4, 13, 26, 52, 1, 7, 29, 203, 1, 877, 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 23, 30, 36, 45, 46, 60, 69, 90, 92, 115, 138, 180, 207, 230, 276, 345, 414, 460, 690, 828, 1035, 1380, 2070, 4140, 1, 3, 7, 19, 21, 53, 57, 133, 159, 371, 399, 1007, 1113, 3021, 7049, 21147
Offset: 0

Views

Author

Vincenzo Librandi, Nov 07 2024

Keywords

Examples

			Triangle begins:
  1,
  1,
  1,   2,
  1,   5,
  1,   3,  5,  15,
  1,   2,  4,  13, 26, 52,
  1,   7, 29, 203,
  1, 877,
  ...
		

Crossrefs

Row sums give A262349.
Row lengths give A278973.

Programs

  • Magma
    /* As triangle */ [Divisors(Bell(n)): n in [0..30]];
  • Mathematica
    Flatten[Table[Divisors[BellB[n]], {n, 0, 20}]]

Formula

T(n,k) = A027750(A000110(n),k).
T(n,2) = A279623(n) for n>=2.
Showing 1-2 of 2 results.