A249790 Triangle in which row n lists the coefficients in Product_{k=1..n} (1 + k*x + x^2), for n>=0, as read by rows.
1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 6, 14, 18, 14, 6, 1, 1, 10, 39, 80, 100, 80, 39, 10, 1, 1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1, 1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1, 1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1, 1, 36, 554, 4788, 25753, 90720, 216166, 358056, 422252
Offset: 0
Examples
Triangle begins: 1; 1, 1, 1; 1, 3, 4, 3, 1; 1, 6, 14, 18, 14, 6, 1; 1, 10, 39, 80, 100, 80, 39, 10, 1; 1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1; 1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1; 1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1; 1, 36, 554, 4788, 25753, 90720, 216166, 358056, 422252, 358056, 216166, 90720, 25753, 4788, 554, 36, 1; 1, 45, 879, 9810, 69399, 327285, 1058399, 2394270, 3860922, 4516380, 3860922, 2394270, 1058399, 327285, 69399, 9810, 879, 45, 1; 1, 55, 1330, 18645, 168378, 1031085, 4400648, 13305545, 28862021, 45519870, 52885644, 45519870, 28862021, 13305545, 4400648, 1031085, 168378, 18645, 1330, 55, 1; ...
Links
Crossrefs
Programs
-
PARI
{T(n,k)=polcoeff(prod(m=1, n, 1 + m*x + x^2 +x*O(x^k)), k,x)} for(n=0,10,for(k=0,2*n,print1(T(n,k),", "));print(""))
Formula
E.g.f.: 1/(1 - x*y)^(1/y + 1 + y). - Paul D. Hanna, Mar 02 2019
E.g.f.: A(x,y) = 1/(1-x*y) * Sum_{k>=0} (1/y^k + y^k)/2^(0^k) * Sum_{n>=0} (-log(1 - x*y))^(2*n+k) / (n!*(n+k)!). - Paul D. Hanna, Mar 02 2019
E.g.f. of diagonal k: (1/y^k)/(1-x*y) * Sum_{n>=0} (-log(1 - x*y))^(2*n+k) / (n!*(n+k)!) for k >= 0. - Paul D. Hanna, Mar 02 2019
E.g.f.: A(x,y) = x / Series_Reversion( F(x,y) ) such that F(x/A(x,y),y) = x, where F(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + (n+k)*y + n*y^2). - Paul D. Hanna, Mar 02 2019