cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249807 a(0) = 1; afterwards a(n) is the smallest positive square that added to all previous terms produces a prime.

Original entry on oeis.org

1, 1, 1, 4, 4, 36, 36, 144, 36, 324, 324, 36, 36, 36, 144, 144, 144, 36, 36, 36, 900, 900, 900, 324, 900, 36, 324, 36, 324, 576, 324, 144, 36, 324, 36, 576, 144, 2304, 576, 36, 144, 900, 324, 144, 576, 324, 900, 36, 144, 900, 2916, 144, 2916, 36, 576, 900, 1764, 324, 144, 1296, 36, 36
Offset: 0

Views

Author

Zak Seidov, Nov 06 2014

Keywords

Comments

All terms starting with a(5) are multiples of 36.
a(n) exists for all n under the Hardy-Littlewood Conjecture F. - Charles R Greathouse IV, Nov 06 2014

Examples

			1+1+1+4=7(prime), 7+4=11(prime), 11+36=47(prime), 47+36=83(prime).
		

Crossrefs

Cf. A073609.

Programs

  • Mathematica
    nxt[{t_,a_}]:=Module[{k=1},While[!PrimeQ[t+k^2],k++];{t+k^2,k^2}]; NestList[nxt,{1,1},70][[;;,2]] (* Harvey P. Dale, Jul 28 2023 *)
  • PARI
    first(n)=n=max(n,5); my(v=vector(n+1,i,1),k,s=11); v[4]=v[5]=4; for(i=6,#v, k=6; while(!isprime(s+k^2), k+=6); s+=v[i]=k^2); v \\ Charles R Greathouse IV, Nov 06 2014