cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055204 Squarefree part of n!: n! divided by its largest square divisor.

Original entry on oeis.org

1, 2, 6, 6, 30, 5, 35, 70, 70, 7, 77, 231, 3003, 858, 1430, 1430, 24310, 12155, 230945, 46189, 969969, 176358, 4056234, 676039, 676039, 104006, 312018, 44574, 1292646, 1077205, 33393355, 66786710, 2203961430, 64822395, 90751353, 90751353
Offset: 1

Views

Author

Labos Elemer, Jun 19 2000

Keywords

Comments

Smallest number such that n!*a(n) is a square.

Examples

			10! = 518400*7 = 7*(720)^2, so a(10) = 7.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 01 2024 *)
    a[n_] := Block[{fi = Transpose@ FactorInteger[n!]}, Times @@ (fi[[1]]^Mod[fi[[2]], 2])]; Array[a, 40] (* Robert G. Wilson v, Nov 17 2024 *)
  • PARI
    a(n)=core(n!) \\ Charles R Greathouse IV, Apr 03 2012

Formula

a(n) = A007913(n!) = n!/A055071(n) = A000142(n)/A055071(n).
log a(n) ~ n log 2. - Charles R Greathouse IV, Apr 03 2012
sqrt(n!) = A055772(n) * sqrt(a(n)). - Alonso del Arte, Feb 16 2015

A008339 a(1)=1; for n >= 1, a(n+1) = lcm(a(n),n) / gcd(a(n),n).

Original entry on oeis.org

1, 1, 2, 6, 6, 30, 5, 35, 280, 2520, 252, 2772, 231, 3003, 858, 1430, 5720, 97240, 437580, 8314020, 415701, 969969, 176358, 4056234, 2704156, 67603900, 2600150, 70204050, 10029150, 290845350, 9694845, 300540195, 9617286240, 35263382880, 1037158320
Offset: 1

Views

Author

Keywords

Comments

a(n+1) = Product(A098666(n,k): 1<=k<=n), row-products of triangle A098666. - Reinhard Zumkeller, Sep 20 2004
a(n+1) is divisible by all primes in (n/2, n]; thus lim_{n->infinity} a(n) = infinity. - Franklin T. Adams-Watters, Dec 13 2006

Crossrefs

Cf. A249831.

Programs

  • Maple
    A008339 := proc(n) option remember; if n = 1 then 1 else lcm(A008339(n-1), n-1)/gcd(A008339(n-1), n-1); fi; end;
  • Mathematica
    FoldList[ LCM[ #1, #2 ]/GCD[ #1, #2 ]&, 1, Range[ 30 ] ] (* Olivier Gérard, Aug 15 1997 *)

Formula

a(1) = 1, a(n) = a(n-1)*r/s where y is the largest divisor of a(n-1) with r*s = n. - Amarnath Murthy, Jul 01 2003
a(1) = 1, a(n+1) = a(n)*n/gcd(a(n),n)^2. - Franklin T. Adams-Watters, Dec 13 2006
Showing 1-2 of 2 results.