cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A098666 Triangle read by rows, 1<=k<=n: the n-th row contains the first n numbers after pairwise reducing all common divisors from left to right.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 1, 3, 2, 1, 1, 3, 2, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 1, 5, 1, 7, 8, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 1, 1, 1, 1, 1, 7, 4, 9, 1, 1, 1, 1, 1, 1, 1, 7, 4, 9, 1, 11, 1, 1, 1, 1, 1, 1, 7, 1, 3, 1, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 1, 11, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 11, 1, 13, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 20 2004

Keywords

Comments

A098667(n) = Max{m: T(n,k)=1 for 1<=k<=m<=n};
A098668(n) = T(n,n);
T(A098669(n), A098669(n)) = 1;
A008339 gives row-products.

Programs

  • Mathematica
    T[n_, n_] := X[n, n-1];
    T[n_, k_] := T[n, k] = T[n-1, k]/GCD[T[n-1, k], X[n, k-1]];
    X[n_, 0] := n;
    X[n_, k_] := X[n, k] = X[n, k-1]/GCD[T[n-1, k], X[n, k-1]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 20 2021 *)

Formula

T(n, n)=X(n, n-1) and T(n, k)=T(n-1, k)/GCD(T(n-1, k), X(n, k-1)), where X(n, 0)=n and X(n, k)=X(n, k-1)/GCD(T(n-1, k), X(n, k-1)) for 1<=k

A249831 A(n,n) = 1, A(n,k) = A(n,k+1)*k / gcd(A(n,k+1),k)^2 if n>k, A(n,k) = A(n,k-1)*k / gcd(A(n,k-1),k)^2 if n=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 6, 1, 2, 6, 3, 2, 6, 30, 12, 1, 6, 6, 5, 60, 4, 3, 6, 30, 35, 10, 20, 1, 12, 30, 5, 280, 70, 30, 5, 4, 60, 5, 35, 2520, 140, 210, 30, 1, 20, 10, 35, 70, 252, 1260, 420, 210, 6, 5, 30, 70, 70, 70, 2772, 126, 420, 420, 42, 1, 30, 210, 35, 70, 7
Offset: 1

Author

Alois P. Heinz, Nov 06 2014

Keywords

Examples

			Square array A(n,k) begins:
:   1,  2,  6,   6,  30,  5,  35, 280, 2520,  252, ...
:   1,  1,  3,  12,  60, 10,  70, 140, 1260,  126, ...
:   2,  2,  1,   4,  20, 30, 210, 420,  420,   42, ...
:   6,  6,  3,   1,   5, 30, 210, 420,  420,   42, ...
:   6,  6, 12,   4,   1,  6,  42,  84,   84,  210, ...
:  30, 30, 60,  20,   5,  1,   7,  56,  504, 1260, ...
:   5,  5, 10,  30,  30,  6,   1,   8,   72,  180, ...
:  35, 35, 70, 210, 210, 42,   7,   1,    9,   90, ...
:  70, 70, 35, 105, 420, 84,  56,   8,    1,   10, ...
:  70, 70, 35, 105, 420, 84, 504,  72,    9,    1, ...
		

Crossrefs

Column k=1 gives A055204(n-1) for n>1.
Row n=1 gives A008339(k+1).
Main diagonal gives: A000012.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=n, 1,
          (r-> r*k/igcd(r, k)^2)(A(n, k+`if`(n>k, 1, -1))))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == n, 1, Function[{r}, r*k/GCD[r, k]^2][A[n, k+If[n>k, 1, -1]]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Dec 02 2014, translated from Maple *)

A077139 a(1) = 1, a(n) = lcm(n, a(n-1)) / gcd(n, a(n-1)).

Original entry on oeis.org

1, 2, 6, 6, 30, 5, 35, 280, 2520, 252, 2772, 231, 3003, 858, 1430, 5720, 97240, 437580, 8314020, 415701, 969969, 176358, 4056234, 2704156, 67603900, 2600150, 70204050, 10029150, 290845350, 9694845, 300540195, 9617286240, 35263382880, 1037158320
Offset: 1

Author

Amarnath Murthy, Oct 30 2002

Keywords

Examples

			a(5) = 30 because given a(4) = 6: lcm(5, 6) / gcd(5, 6) = 30 / 1 = 30.
		

Crossrefs

Essentially a duplicate of A008339, which is the main entry for this sequence.

Programs

  • Mathematica
    k = 1; Print[k]; Do[k = LCM[n, k] / GCD[n, k]; Print[k], {n, 2, 30}] (* Ryan Propper, Jun 19 2005 *)
    nxt[{n_,a_}]:={n+1,LCM[n+1,a]/GCD[n+1,a]}; Transpose[NestList[nxt,{1,1},40]] [[2]] (* Harvey P. Dale, Mar 07 2013 *)

Extensions

Corrected and extended by Ryan Propper, Jun 19 2005

A309705 a(n) = lcm(a(n-1), n) - gcd(a(n-1), n) where a(1) = 1.

Original entry on oeis.org

1, 1, 2, 2, 9, 15, 104, 96, 285, 565, 6214, 37282, 484665, 6785309, 101779634, 814237070, 13842030189, 83052181131, 1577991441488, 7889957207436, 55229700452049, 1215053409945077, 27946228428736770, 111784913714947074, 2794622842873676849, 72660193914715598073
Offset: 1

Author

Atticus Cull, Aug 13 2019

Keywords

Comments

The sequence seems to grow between exponentially and factorially but that's just a suspicion.

Examples

			For n = 5, since a(4) = 2, a(5) = lcm(5,2) - gcd(5,2) = 10 - 1 = 9.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          ilcm(a(n-1), n)-igcd(a(n-1), n))
        end:
    seq(a(n), n=1..29);  # Alois P. Heinz, Sep 17 2019
  • Mathematica
    a[1] = 1; a[n_] := a[n] = LCM[a[n - 1], n] - GCD[a[n - 1], n]; Array[a, 26] (* Amiram Eldar, Sep 17 2019 *)
    nxt[{n_,a_}]:={n+1,LCM[a,n+1]-GCD[a,n+1]}; NestList[nxt,{1,1},30][[All,2]] (* Harvey P. Dale, Apr 05 2020 *)
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n] = lcm(v[n-1], n) - gcd(v[n-1], n)); v} \\ Andrew Howroyd, Aug 28 2019
  • Python
    def lcmMinusGcd(n):
        retlist = [1]
        for i in range(1, n):
            g = gcd(retlist[i-1], i+1)
            retlist.append( floor(retlist[i-1]*(i+1) / g) - g)
        return ', '.join(map(str,retlist))
    

Formula

a(n) = lcm(a(n-1), n) - gcd(a(n-1), n) for n > 1.
Showing 1-4 of 4 results.