cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Atticus Cull

Atticus Cull's wiki page.

Atticus Cull has authored 1 sequences.

A309705 a(n) = lcm(a(n-1), n) - gcd(a(n-1), n) where a(1) = 1.

Original entry on oeis.org

1, 1, 2, 2, 9, 15, 104, 96, 285, 565, 6214, 37282, 484665, 6785309, 101779634, 814237070, 13842030189, 83052181131, 1577991441488, 7889957207436, 55229700452049, 1215053409945077, 27946228428736770, 111784913714947074, 2794622842873676849, 72660193914715598073
Offset: 1

Author

Atticus Cull, Aug 13 2019

Keywords

Comments

The sequence seems to grow between exponentially and factorially but that's just a suspicion.

Examples

			For n = 5, since a(4) = 2, a(5) = lcm(5,2) - gcd(5,2) = 10 - 1 = 9.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          ilcm(a(n-1), n)-igcd(a(n-1), n))
        end:
    seq(a(n), n=1..29);  # Alois P. Heinz, Sep 17 2019
  • Mathematica
    a[1] = 1; a[n_] := a[n] = LCM[a[n - 1], n] - GCD[a[n - 1], n]; Array[a, 26] (* Amiram Eldar, Sep 17 2019 *)
    nxt[{n_,a_}]:={n+1,LCM[a,n+1]-GCD[a,n+1]}; NestList[nxt,{1,1},30][[All,2]] (* Harvey P. Dale, Apr 05 2020 *)
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n] = lcm(v[n-1], n) - gcd(v[n-1], n)); v} \\ Andrew Howroyd, Aug 28 2019
  • Python
    def lcmMinusGcd(n):
        retlist = [1]
        for i in range(1, n):
            g = gcd(retlist[i-1], i+1)
            retlist.append( floor(retlist[i-1]*(i+1) / g) - g)
        return ', '.join(map(str,retlist))
    

Formula

a(n) = lcm(a(n-1), n) - gcd(a(n-1), n) for n > 1.