A249863 Chebyshev S polynomial (A049310) evaluated at x = 26/7 and multiplied by powers of 7 (A000420).
1, 26, 627, 15028, 360005, 8623758, 206577463, 4948449896, 118537401609, 2839498396930, 68018625641339, 1629348845225244, 39030157319430733, 934945996889162102, 22396118210466108735, 536486719624549884112
Offset: 0
Links
Programs
-
Magma
I:=[1,26]; [n le 2 select I[n] else 26*Self(n-1)-49*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 09 2014
-
Mathematica
LinearRecurrence[{26,-49},{1,26},20] (* Harvey P. Dale, Jun 30 2017 *)
Formula
a(n) = 7^n*S(n, 26/7) with Chebyshev's S polynomial (for S see the coefficient triangle A049310).
O.g.f.: 1/(1 - 26*x + (7*x)^2).
a(n) = 26*a(n-1) - 49*a(n-2), a(-1) = 0, a(0) = 1 .
Comments