A249940 E.g.f.: 1 + Sum_{n>=1} 2*exp(n^2*x) / 2^n.
3, 12, 300, 18732, 2183340, 408990252, 112366270380, 42565371881772, 21262618727925420, 13542138653027381292, 10710751184977536812460, 10299377679212761538176812, 11833116484296581890602595500, 16008903039376673969944510156332, 25190248259800264134073495741338540
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 3 + 12*x + 300*x^2/2! + 18732*x^3/3! + 2183340*x^4/4! +... where the e.g.f. equals the infinite series: A(x) = 1 + 2*exp(x)/2 + 2*exp(4*x)/2^2 + 2*exp(9*x)/2^3 + 2*exp(16*x)/2^4 + 2*exp(25*x)/2^5 + 2*exp(36*x)/2^6 +... We also have the following series expansion: 3/(5 - 4*cosh(x)) = 3 + 12*x^2/2! + 300*x^4/4! + 18732*x^6/6! + 2183340*x^8/8! + 408990252*x^10/10! +...
Programs
-
Mathematica
nmax=20; Table[(CoefficientList[Series[3/(5-4*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[n]],{n,1,2*nmax+2,2}] (* Vaclav Kotesovec, Nov 29 2014 *)
-
PARI
/* E.g.f.: 3/(5 - 4*cosh(x)): */ {a(n) = local(X=x+O(x^(2*n+1))); (2*n)!*polcoeff( 3/(5 - 4*cosh(X)), 2*n)} for(n=0,20,print1(a(n),", "))
-
PARI
/* E.g.f.: 1 + Sum_{n>=1} 2*exp(n^2*x)/2^n */ \p100 \\ set precision {a(n) = round( n!*polcoeff(1+2*sum(m=1,500,exp(m^2*x +x*O(x^n))/2^m*1.), n))} for(n=0,20,print1(a(n),", "))
-
PARI
/* Formula for a(n): */ {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} {a(n) = if(n==0,3, sum(k=0, 2*n, 4*k! * Stirling2(2*n, k) ))} for(n=0, 20, print1(a(n), ", "))
-
PARI
/* Formula for a(n): */ {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} {a(n) = if(n==0,3, 2*sum(k=1,(2*n+1)\3, (3*k)! * Stirling2(2*n+1,3*k) / k))} for(n=0,20,print1(a(n),", "))
Formula
E.g.f.: 3/(5 - 4*cosh(x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!.
a(n) = Sum_{k=0..2*n} 4*k! * Stirling2(2*n, k) for n>0 with a(0)=3.
a(n) = Sum_{k=1..[(2*n+1)/3]} 2*(3*k)! * Stirling2(2*n+1,3*k) / k for n>0 with a(0)=3, after Vladimir Kruchinin in A242858.
a(n) ~ 2 * (2*n)! / (log(2))^(2*n+1). - Vaclav Kotesovec, Nov 29 2014