A249943 a(n) = smallest k such that the numbers 1..n appear among A098550(1), ..., A098550(k), or a(n) = 0 if there is no such k.
1, 2, 3, 4, 9, 10, 15, 15, 15, 16, 22, 22, 23, 23, 23, 23, 30, 31, 43, 43, 43, 43, 51, 51, 51, 51, 51, 51, 61, 61, 62, 62, 62, 62, 62, 62, 79, 79, 79, 79, 87, 87, 88, 88, 88, 88, 101
Offset: 1
Keywords
Examples
Let n=6. Since A098550(9)=5 and A098550(10)=6, a(6)=10. - Corrected by _David Applegate_, Dec 08 2014
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015 and J. Int. Seq. 18 (2015) 15.6.7.
Programs
-
Haskell
a249943 n = a249943_list !! (n-1) a249943_list = scanl1 max $ map a098551 [1..] -- Reinhard Zumkeller, Dec 06 2014
-
Mathematica
f[lst_List] := Block[{k=4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k]>1 || MemberQ[lst, k], k++]; Append[lst, k]]; A098550 = Nest[f, {1, 2, 3}, 100]; runningMax := Rest[FoldList[Max, -Infinity, #]]&; runningMax[Take[Ordering[A098550], NestWhile[#+1&, 1, MemberQ[A098550, #]&]-1]] (* Jean-François Alcover, Dec 05 2014, after Robert G. Wilson v and Peter J. C. Moses *)
Formula
The author conjectures that a(n)/n <= a(19)/19 = 43/19. Peter J. C. Moses verified that the strict inequality holds for 19 < n <= 1.1*10^5. - Vladimir Shevelev, Dec 06 2014
Comments