cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249946 G.f.: Sum_{n>=0} x^n/(1-x)^(3*n) * Sum_{k=0..n} C(n,k)^2 * x^k.

Original entry on oeis.org

1, 1, 5, 20, 81, 335, 1406, 5965, 25517, 109872, 475597, 2067679, 9022210, 39490321, 173311717, 762382740, 3360486897, 14839284335, 65632607150, 290703303277, 1289265151469, 5724578761376, 25445326076925, 113212867808159, 504164051602178, 2247012340118785, 10022342589850853, 44734125313004500
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 20*x^3 + 81*x^4 + 335*x^5 + 1406*x^6 +...
where
A(x) = 1 + x/(1-x)^3*(1+x) + x^2/(1-x)^6*(1+2^2*x+x^2) + x^3/(1-x)^9*(1+3^2*x+3^2*x^2+x^3) + x^4/(1-x)^12*(1+4^2*x+6^2*x^2+4^2*x^3+x^4) + x^5/(1-x)^15*(1+5^2*x+10^2*x^2+10^2*x^3+5^2*x^4+x^5) +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)^2/Sqrt[1 - 6*x + 7*x^2 - 2*x^3 + x^4], {x, 0, 50}], x] (* G. C. Greubel, Feb 05 2017 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(3*m)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff( (1-x)^2 / sqrt(1 - 6*x + 7*x^2 - 2*x^3 + x^4 +x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: (1-x)^2 / sqrt(1 - 6*x + 7*x^2 - 2*x^3 + x^4).
a(n) ~ sqrt((21*sqrt(2) + sqrt(14*(88*sqrt(2)-61)))/7)/4 * ((3 + 2*sqrt(2) + sqrt(5+4*sqrt(2)))/2)^n / sqrt(Pi*n). - Vaclav Kotesovec, Nov 09 2014