cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249951 Numbers n such that A113630(n) is prime.

Original entry on oeis.org

3, 5, 8, 23, 42, 62, 63, 75, 90, 98, 177, 192, 207, 213, 222, 228, 233, 263, 288, 297, 317, 320, 402, 453, 455, 528, 570, 602, 620, 650, 672, 752, 780, 797, 810, 863, 867, 870, 875, 912, 932, 935, 978, 1010, 1043, 1065, 1067, 1070, 1110, 1125, 1133, 1142, 1190
Offset: 1

Views

Author

Chai Wah Wu, Nov 09 2014

Keywords

Comments

A113630(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8.

Examples

			See example section of A113630.
		

Crossrefs

Cf. A113630.
Cf. A010051.

Programs

  • Haskell
    a249951 n = a249951_list !! (n-1)
    a249951_list = filter ((== 1) . a010051'' . a113630) [1..]
    -- Reinhard Zumkeller, Nov 22 2014
  • Magma
    [n: n in [0..1500] | IsPrime(1+2*n+3*n^2+4*n^3+ 5*n^4+6*n^5+7*n^6+8*n^7+9*n^8)]; // Vincenzo Librandi, Nov 09 2014
    
  • PARI
    for(n=1,5000,s=sum(i=1,9,i*n^(i-1));if(ispseudoprime(s),print1(n,", "))) \\ Derek Orr, Nov 09 2014
    
  • Python
    from sympy import isprime
    A249951_list, m = [], [362880, -1229760, 1607760, -1011480, 309816, -40752, 1584, -4, 1]
    for n in range(1,10**5+1):
        for i in range(8):
            m[i+1]+= m[i]
        if isprime(m[-1]):
            A249951_list.append(n)