cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249999 Expansion of 1/((1-x)^2*(1-2*x)*(1-3*x)).

Original entry on oeis.org

1, 7, 32, 122, 423, 1389, 4414, 13744, 42245, 128771, 390396, 1179366, 3554467, 10696153, 32153978, 96592988, 290041089, 870647535, 2612991160, 7841070610, 23527406111, 70590606917, 211788597942, 635399348232, 1906265153533, 5718929678299, 17157057470324, 51471709281854
Offset: 0

Views

Author

Alex Ratushnyak, Dec 28 2014

Keywords

Crossrefs

Cf. A000392 (first differences), A094705, A243869, A249997.

Programs

  • Magma
    [(2*n +9 -2^(n+5) +3^(n+3))/4: n in [0..50]]; // G. C. Greubel, Jul 21 2022
    
  • Mathematica
    LinearRecurrence[{7,-17,17,-6}, {1,7,32,122}, 50] (* G. C. Greubel, Jul 21 2022 *)
    CoefficientList[Series[1/((1-x)^2(1-2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, Feb 11 2025 *)
  • SageMath
    [(2*n+9 -2^(n+5) +3^(n+3))/4 for n in (0..50)] # G. C. Greubel, Jul 21 2022

Formula

G.f.: 1/((1-x)^2 * (1-2*x) * (1-3*x)).
a(n) = 9/4 - 2^(n+3) + n/2 + 3^(n+3)/4. - R. J. Mathar, Jan 09 2015
E.g.f.: (1/4)*((9 + 2*x) - 32*exp(x) + 27*exp(2*x))*exp(x). - G. C. Greubel, Jul 21 2022