A250071 Smallest number k such that the symmetric representation of sigma(k) has maximum width n for those k whose representation has nondecreasing width up to the diagonal.
1, 6, 72, 120, 5184, 1440, 373248, 6720, 28800, 103680, 1934917632, 80640, 278628139008, 7464960, 2073600, 483840, 1444408272617472, 1612800, 103997395628457984, 5806080, 298598400, 77396705280, 539122498937926189056, 7096320, 1658880000, 5572562780160, 90316800, 418037760, 402452788967166148425547776, 116121600
Offset: 1
Keywords
Examples
a(6) = 1440 = 2^5 * 3^2 * 5 has 6 odd divisors. It is the smallest number of the form 2^m * q with m > 0, q odd and such that q < 2^(m+1).
Crossrefs
Programs
-
Mathematica
(* function a2[ ] is defined in A249223 *) smallQ[n_] := Module[{x=2^IntegerExponent[n,2]}, n/x<2x] ndWidth[{m_,n_}] := Select[Range[m, n], smallQ] a250071[x_List] := Module[{i, max, acc={{1, 1}}}, For[i=1, i<=Length[x], i++, max={Max[a2[x[[i]]]], x[[i]]}; If[!MemberQ[Transpose[acc][[1]], max[[1]]], AppendTo[acc, max]]]; acc] (* returns (argument,result) data pairs since sequence is non-monotonic *) Sort[a250071[ndWidth[{1,100000000}]]] (* computed in steps *) (* alternate implementation using function f[ ] by T. D. Noe in A162247 *) sF[n_] := Min[Map[Apply[Times, Prime[Range[2, Length[#]+1]]^#]&, Map[Reverse[#-1]&, f[n]]]] f1U[n_] := Module[{s=sF[n], k}, k=Floor[Log[2, s]]; 2^k s] a250071[n_] := Map[f1U, Range[n]] a250071[30] (* Hartmut F. W. Hoft, Nov 27 2024 *)
Formula
a(n) = min(2^m * q, m >= 0 & q odd & sigma_0(q) = n & q < 2^(m+1)) where sigma_0 is the number of divisors.
a(p) = 2^ceiling((p-1)*(log_2(3)) - 1) * 3^(p-1) for primes p.
Extensions
a(21)-a(30) from Hartmut F. W. Hoft, Nov 27 2024
Comments