A250122 Coordination sequence for planar net 3.12.12.
1, 3, 4, 6, 8, 12, 14, 15, 18, 21, 22, 24, 28, 30, 30, 33, 38, 39, 38, 42, 48, 48, 46, 51, 58, 57, 54, 60, 68, 66, 62, 69, 78, 75, 70, 78, 88, 84, 78, 87, 98, 93, 86, 96, 108, 102, 94, 105, 118, 111, 102, 114, 128, 120, 110, 123, 138, 129
Offset: 0
Links
- Maurizio Paolini, Table of n, a(n) for n = 0..1021
- Agnes Azzolino, Regular and Semi-Regular Tessellation Paper, 2011.
- Agnes Azzolino, Illustration of 3.12.12 tiling [From previous link]
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also on arXiv, arXiv:1803.08530 [math.CO], 2018-2019. See section 10 The 3.12^2 tiling.
- Rostislav Grigorchuk and Cosmas Kravaris, On the growth of the wallpaper groups, arXiv:2012.13661 [math.GR], 2020. See section 4.6 p. 23.
- Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
- Tom Karzes, Tiling Coordination Sequences
- Maurizio Paolini, C program for A250122
- Reticular Chemistry Structure Resource, hca
- N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
- Index entries for linear recurrences with constant coefficients, signature (2,-3,4,-3,2,-1).
Crossrefs
Programs
-
Mathematica
Join[{1, 3, 4}, LinearRecurrence[{2, -3, 4, -3, 2, -1}, {6, 8, 12, 14, 15, 18}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
Formula
From Joseph Myers, Nov 28 2014: (Start)
Empirically,
a(4n) = 10n - 2 except for a(0) = 1
a(4n+1) = 9n + 3
a(4n+2) = 8n + 6 except for a(2) = 4
a(4n+3) = 9n + 6. (End)
If these are correct, the sequence has g.f.
-(-1 - x - x^2 - 3*x^3 + x^4 - 5*x^5 + 3*x^6 - 4*x^7 + 2*x^8)/((x - 1)^2*(x^2 + 1)^2). - N. J. A. Sloane, Nov 28 2014
All the above conjectures are true. - N. J. A. Sloane, Dec 31 2015
E.g.f.: (9*x*cosh(x) - 4*(2*cos(x) + x^2 - 3) + 9*x*sinh(x) - (x - 3)*sin(x))/4. - Stefano Spezia, Jan 05 2023
Extensions
a(8) onwards from Maurizio Paolini and Joseph Myers (independently), Nov 28 2014
Comments