cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250127 Numbers k where A098550(k)/k reaches a record high.

Original entry on oeis.org

1, 5, 7, 11, 13, 103, 177, 206, 684, 1138, 1368, 1817, 2046, 2270, 2485, 4959, 7411, 19616, 22061, 24482, 31776, 220238, 314155, 345422, 376714, 532978, 1592947, 3707718, 4235919, 4763906, 6874759, 7929554, 8984063, 9511273, 10038369, 50020257, 60003553, 79962404
Offset: 1

Views

Author

N. J. A. Sloane, Dec 02 2014

Keywords

Examples

			The record values of A098550(k)/k at these points are 1, 9/5, 15/7, 25/11, 35/13, 329/103, 581/177, 679/206, 3443/684, 5753/1138, 6941/1368, 9229/1817, 947/186, 11561/2270, 14963/2485, 30043/4959, 45071/7411, 120107/19616, 10399/1697, 150137/24482, 255221/31776, 1786819/220238, 2552567/314155, 2807737/345422, 3063077/376714, 4849921/532978, ...
The corresponding list of pairs [k, A098550(k)/k] is:
[1, 1], [5, 1.800000000], [7, 2.142857143], [11, 2.272727273], [13, 2.692307692], [103, 3.194174757], [177, 3.282485876], [206, 3.296116505], [684, 5.033625731], [1138, 5.055360281], [1368, 5.073830409], [1817, 5.079251513], [2046, 5.091397849], [2270, 5.092951542], [2485, 6.021327968], [4959, 6.058277879], [7411, 6.081635407], [19616, 6.122909869], [22061, 6.127872717], [24482, 6.132546361], [31776, 8.031879406], [220238, 8.113127616], [314155, 8.125183428], [345422, 8.128425520], [376714, 8.131041055], [532978, 9.099664526], ...
It would be nice to know what curve these points lie on.
		

Crossrefs

Cf. A098550. See A251415 for the values of A098550 at these points.

Programs

  • Python
    from math import gcd
    A250127_list, l1, l2, s, u, l, b = [1], 3, 2, 4, 1, 1, {}
    for n in range(4,10**4):
        i = s
        while True:
            if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1:
                l2, l1, b[i] = l1, i, 1
                while s in b:
                    b.pop(s)
                    s += 1
                if u*n < i*l:
                    A250127_list.append(n)
                    u, l = i, n
                break
            i += 1 # Chai Wah Wu, Dec 06 2014

Extensions

a(23)-a(26) and extended example section by Chai Wah Wu, Dec 06 2014
a(27)-a(34) from David Applegate, Dec 18 2014
a(35)-a(38) from Jinyuan Wang, Jan 26 2025