A250200 Least number k>1 such that (2n-1)^k - 2 is prime, or 0 if no such number exists.
0, 2, 2, 2, 2, 4, 2, 2, 6, 2, 2, 24, 7, 2, 2, 3, 2, 2, 2, 4, 4, 2, 11, 2, 2, 8, 4, 2, 12, 4, 2, 2, 8, 3, 2, 2, 4, 2, 2, 38, 130, 4, 4, 4, 2, 3, 2, 4, 747, 3, 4, 2, 10, 2, 3, 17, 10, 13, 2, 2, 2, 6, 42, 2, 3, 2, 6, 2, 10, 2, 4, 4, 2, 16, 50, 3, 9, 2, 22, 25
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..143
Programs
-
Mathematica
lst = {0}; For[n = 2, n ≤ 143, n++, For[k = 2, k >= 1, k++, If[PrimeQ[(2*n - 1)^k - 2], AppendTo[lst, k]; Break[]]]]; lst lnk[n_]:=Module[{k=2,c=2n-1},While[!PrimeQ[c^k-2],k++];k]; Join[{0}, Array[ lnk,80,2]] (* Harvey P. Dale, Jul 24 2017 *)