cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090086 Smallest pseudoprime to base n, not necessarily exceeding n (cf. A007535).

Original entry on oeis.org

4, 341, 91, 15, 4, 35, 6, 9, 4, 9, 10, 65, 4, 15, 14, 15, 4, 25, 6, 21, 4, 21, 22, 25, 4, 9, 26, 9, 4, 49, 6, 25, 4, 15, 9, 35, 4, 39, 38, 39, 4, 205, 6, 9, 4, 9, 46, 49, 4, 21, 10, 51, 4, 55, 6, 15, 4, 57, 15, 341, 4, 9, 62, 9, 4, 65, 6, 25, 4, 69, 9, 85, 4, 15, 74, 15, 4, 77, 6, 9, 4, 9, 21, 85, 4, 15, 86, 87, 4, 91, 6
Offset: 1

Views

Author

Labos Elemer, Nov 25 2003

Keywords

Comments

If n-1 is composite, then a(n) < n. - Thomas Ordowski, Aug 08 2018
Conjecture: a(n) = A007535(n) for finitely many n. For n > 2; if a(n) > n, then n-1 is prime (find all these primes). - Thomas Ordowski, Aug 09 2018
It seems that if a(2^p) = p^2, then 2^p-1 is prime. - Thomas Ordowski, Aug 10 2018
a(n) is the smallest composite k such that n^(k-1) == (1-k)^n (mod k). - Thomas Ordowski, Mar 19 2025

Examples

			From _Robert G. Wilson v_, Feb 26 2015: (Start)
a(n) = 4 for n = 1 + 4*k, k >= 0.
a(n) = 6 for n = 7 + 12*k, k >= 0.
a(n) = 9 for n = 8 + 18*k, 10 + 18*k, 35 + 36*k, k >= 0.
(End)
a(n) = 10 for n = 51 + 60*k, 11 + 180*k, 131 + 180*k, k >= 0.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, j = k++]; k]; Array[f, 91] (* Robert G. Wilson v, Feb 26 2015 *)
  • PARI
    /* a(n) <= 2000 is sufficient up to n = 10000 */
    a(n) = for(k=2,2000,if((n^(k-1))%k==1 && !isprime(k), return(k))) \\ Eric Chen, Feb 22 2015
    
  • PARI
    a(n) = {forcomposite(k=2, , if (Mod(n,k)^(k-1) == 1, return (k)););} \\ Michel Marcus, Mar 02 2015

Formula

a(n) = LeastComposite{x; n^(x-1) mod x = 1}.

A253178 Least k>=1 such that 2*A007494(n)^k+1 is prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 47, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 2729, 1, 1, 2, 1, 2, 175, 1, 1, 1, 1, 1, 1, 3, 3, 3, 43, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 1, 11, 1, 1, 4, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 192275, 2, 1233, 1, 3, 5, 51, 1, 1, 1, 1, 286, 1, 1, 755, 2, 1, 4, 1, 6, 1, 2
Offset: 1

Views

Author

Eric Chen, Mar 20 2015

Keywords

Comments

If n == 1 (mod 3), then for every positive integer k, 2*n^k+1 is divisible by 3 and cannot be prime (unless n=1). Thus we restrict the domain of this sequence to A007494 (n which is not in the form 3j+1).
Conjecture: a(n) is defined for all n.
a(145) > 200000, a(146) .. a(156) = {1, 1, 66, 1, 4, 3, 1, 1, 1, 1, 6}, a(157) > 100000, a(158) .. a(180) = {2, 1, 2, 11, 1, 1, 3, 321, 1, 1, 3, 1, 2, 12183, 5, 1, 1, 957, 2, 3, 16, 3, 1}.
a(n) = 1 if and only if n is in A144769.

Crossrefs

Programs

  • Mathematica
    A007494[n_] := 2n - Floor[n/2];
    Table[k=1; While[!PrimeQ[2*A007494[n]^k+1], k++]; k, {n, 1, 144}]
  • PARI
    a007494(n) = n+(n+1)>>1;
    a(n) = for(k=1, 2^24, if(ispseudoprime(2*a007494(n)^k+1),return(k)));

Formula

a(n) = A119624(A007494(n)).
Showing 1-2 of 2 results.