A250237 Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and abelian 3-class field tower of length 1.
229, 257, 316, 321, 473, 568, 697, 761, 785, 892, 940, 985, 993, 1016, 1229, 1304, 1345, 1384, 1436, 1509, 1765, 1929, 2024, 2089, 2101, 2233, 2296, 2505, 2920, 2993
Offset: 1
Examples
A250237 covers the dominant part of A250236. The smallest discriminant d in A250236 with non-abelian 3-class field tower of length bigger than 1 is given by d=A250238(1)=469, the initial term of the disjoint sequence A250238.
References
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
Links
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2) (2012), 471-505.
- E. Yoshida, On the 3-class field tower of some biquadratic fields, Acta Arith. 107 (2003), no. 4, 327-336.
Crossrefs
Programs
-
Magma
SetClassGroupBounds("GRH"); for n := 229 to 3000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R,E); C, mC := ClassGroup(K); if ([3,3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo
: x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]),NumberField(a[2])); else H := Compositum(NumberField(a[1]),NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if (0 eq #pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;
Comments