cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250239 Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and second 3-class group isomorphic to SmallGroup(729,95).

Original entry on oeis.org

7453, 8905, 9937, 10069, 14089, 15757, 16737, 17889, 18977, 19869, 20329
Offset: 1

Views

Author

Keywords

Comments

For the discriminants d in A250239, the 3-class field tower of K=Q(sqrt(-3),sqrt(d)) has exactly two stages and the second 3-class group G of K is given by the metabelian 3-group G=SmallGroup(729,95) with transfer kernel type a.1, (0,0,0,0), transfer target type [(9,27),(3,3)^3] and coclass 1. This is the first excited state on the coclass-1 graph.
The reason the 3-class field tower of K must stop at the second Hilbert 3-class field is Blackburn's Theorem on two-generated 3-groups G whose commutator subgroup G' also has two generators. In fact, the group G=SmallGroup(729,95) has commutator subgroup G'=(9,9), two-generated.

References

  • H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.

Crossrefs

A006832, A250235, A250236 are supersequences.
A250237, A250238, A250240, A250241, A250242 are disjoint sequences.

Programs

  • Magma
    SetClassGroupBounds("GRH"); for n := 7453 to 20000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R, E); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo : x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]), NumberField(a[2])); else H := Compositum(NumberField(a[1]), NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if ([9, 9] eq pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;