A250236
Fundamental discriminants d such that the real quadratic field Q(sqrt(d)) and the complex quadratic field Q(sqrt(-3d)) both have cyclic 3-class groups of order 3.
Original entry on oeis.org
229, 257, 316, 321, 469, 473, 568, 697, 761, 785, 892, 940, 985, 993, 1016, 1229, 1304, 1345, 1384, 1436, 1489, 1509, 1708, 1765, 1929, 1937, 2024, 2089, 2101, 2177, 2233, 2296, 2505, 2557, 2589, 2677, 2920, 2941, 2981, 2993
Offset: 1
A250236 is a proper subsequence of A250235. For instance, it does not contain the discriminant d=733, resp. 1373, although the corresponding real quadratic field R=Q(sqrt(d)) has 3-class group (3). The reason is that the 3-dual complex quadratic field C=Q(sqrt(-3d)) of R has 3-class group (9), resp. (27).
- G. Eisenstein, Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus den dritten Wurzeln der Einheit zusammengesetzten Zahlen, J. Reine Angew. Math. 27 (1844), 289-310.
-
for d := 2 to 3000 do a := false; if (1 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then a := true; end if; end if; if (true eq a) then R := QuadraticField(d); E := QuadraticField(-3); K := Compositum(R,E); C := ClassGroup(K); if ([3,3] eq pPrimaryInvariants(C, 3)) then d, ", "; end if; end if; end for;
A250237
Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and abelian 3-class field tower of length 1.
Original entry on oeis.org
229, 257, 316, 321, 473, 568, 697, 761, 785, 892, 940, 985, 993, 1016, 1229, 1304, 1345, 1384, 1436, 1509, 1765, 1929, 2024, 2089, 2101, 2233, 2296, 2505, 2920, 2993
Offset: 1
A250237 covers the dominant part of A250236. The smallest discriminant d in A250236 with non-abelian 3-class field tower of length bigger than 1 is given by d=A250238(1)=469, the initial term of the disjoint sequence A250238.
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
-
SetClassGroupBounds("GRH"); for n := 229 to 3000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R,E); C, mC := ClassGroup(K); if ([3,3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo : x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]),NumberField(a[2])); else H := Compositum(NumberField(a[1]),NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if (0 eq #pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;
A250238
Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and second 3-class group isomorphic to SmallGroup(81,9).
Original entry on oeis.org
469, 1489, 1708, 1937, 2557, 2941, 2981, 3021, 3173, 3305, 3580, 3592, 3736
Offset: 1
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
- N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Camb. Phil. Soc. 53 (1957), 19-27.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2) (2012), 471-505.
- D. C. Mayer, The second p-class group of a number field. Preprint: arXiv:1403.3899v1 [math.NT], 2014.
- D. C. Mayer, Principalization algorithm via class group structure, Preprint: arXiv:1403.3839v1 [math.NT], 2014; J. Théor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
-
SetClassGroupBounds("GRH"); for n := 469 to 10000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R, E); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo : x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]), NumberField(a[2])); else H := Compositum(NumberField(a[1]), NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if ([3, 3] eq pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;
A250239
Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and second 3-class group isomorphic to SmallGroup(729,95).
Original entry on oeis.org
7453, 8905, 9937, 10069, 14089, 15757, 16737, 17889, 18977, 19869, 20329
Offset: 1
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
- N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Camb. Phil. Soc. 53 (1957), 19-27.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2) (2012), 471-505.
- D. C. Mayer, The second p-class group of a number field. Preprint: arXiv:1403.3899v1 [math.NT], 2014.
- D. C. Mayer, Principalization algorithm via class group structure, Preprint: arXiv:1403.3839v1 [math.NT], 2014. J. Théor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
-
SetClassGroupBounds("GRH"); for n := 7453 to 20000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R, E); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo : x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]), NumberField(a[2])); else H := Compositum(NumberField(a[1]), NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if ([9, 9] eq pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;
A250241
Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and second 3-class group isomorphic to SmallGroup(729,34).
Original entry on oeis.org
2589, 4853, 7881, 8057, 8769, 9905, 11697, 20693, 21281, 21337, 24917, 25185, 27548, 28061, 28137, 28936, 28940, 29485, 33864, 35224, 37916, 39633, 41628, 49461, 49541
Offset: 1
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
- I. R. Shafarevich, Extensions with prescribed ramification points, Publ. Math., Inst. Hautes Études Sci. 18 (1964), 71-95 (Russian). English transl. by J. W. S. Cassels: Am. Math. Soc. Transl., II. Ser., 59 (1966), 128-149. - Daniel Constantin Mayer, Sep 24 2015
- J. A. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc. 17 (1977), 257-274.
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2) (2012), 471-505.
- D. C. Mayer, The second p-class group of a number field. Preprint: arXiv:1403.3899v1 [math.NT], 2014.
- D. C. Mayer, Principalization algorithm via class group structure, Preprint: arXiv:1403.3839v1 [math.NT], 2014. J. Théor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
-
SetClassGroupBounds("GRH"); for n := 2589 to 10000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R,E); C, mC := ClassGroup(K); if ([3,3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo : x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]),NumberField(a[2])); else H := Compositum(NumberField(a[1]),NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if ([3,3,3,3] eq pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;
A250242
Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and second 3-class group isomorphic to either SmallGroup(2187,247)-#1;5 or SmallGroup(2187,247)-#1;9.
Original entry on oeis.org
11608, 14056, 20521, 21109, 25949, 27245, 27329, 31065, 32421, 32765, 38085, 38285, 39853, 40156, 43257, 45541, 46489, 48481
Offset: 1
Up to 50000, the discriminants 20521 and 40156 are the only two terms which show a twisted bipolarization. All the other discriminants, starting with 11608, 14056, 21109, etc., reveal the (usual) parallel bipolarization among the four unramified cyclic cubic extensions. In the twisted case, the Hilbert 3-class field of the complex quadratic subfield Q(sqrt(-3d)) gives rise to the distinguished extension of type (9,27) (contained in the transfer target type), whereas in the parallel case the Hilbert 3-class field of the real quadratic subfield Q(sqrt(d)) is responsible for (9,27).
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
- I. R. Shafarevich, Extensions with prescribed ramification points, Publ. Math., Inst. Hautes Études Sci. 18 (1964), 71-95 (Russian). English transl. by J. W. S. Cassels: Am. Math. Soc. Transl., II. Ser., 59 (1966), 128-149. - Daniel Constantin Mayer, Sep 24 2015
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2) (2012), 471-505.
- D. C. Mayer, The second p-class group of a number field. Preprint: arXiv:1403.3899v1 [math.NT], 2014.
- D. C. Mayer, Principalization algorithm via class group structure, Preprint: arXiv:1403.3839v1 [math.NT], 2014. J. Théor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
-
SetClassGroupBounds("GRH"); for n := 11608 to 50000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R,E); C, mC := ClassGroup(K); if ([3,3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo : x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]),NumberField(a[2])); else H := Compositum(NumberField(a[1]),NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if ([3,9,27] eq pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;
Showing 1-6 of 6 results.
Comments