A250242 Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and second 3-class group isomorphic to either SmallGroup(2187,247)-#1;5 or SmallGroup(2187,247)-#1;9.
11608, 14056, 20521, 21109, 25949, 27245, 27329, 31065, 32421, 32765, 38085, 38285, 39853, 40156, 43257, 45541, 46489, 48481
Offset: 1
Examples
Up to 50000, the discriminants 20521 and 40156 are the only two terms which show a twisted bipolarization. All the other discriminants, starting with 11608, 14056, 21109, etc., reveal the (usual) parallel bipolarization among the four unramified cyclic cubic extensions. In the twisted case, the Hilbert 3-class field of the complex quadratic subfield Q(sqrt(-3d)) gives rise to the distinguished extension of type (9,27) (contained in the transfer target type), whereas in the parallel case the Hilbert 3-class field of the real quadratic subfield Q(sqrt(d)) is responsible for (9,27).
References
- H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
- I. R. Shafarevich, Extensions with prescribed ramification points, Publ. Math., Inst. Hautes Études Sci. 18 (1964), 71-95 (Russian). English transl. by J. W. S. Cassels: Am. Math. Soc. Transl., II. Ser., 59 (1966), 128-149. - Daniel Constantin Mayer, Sep 24 2015
Links
- D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2) (2012), 471-505.
- D. C. Mayer, The second p-class group of a number field. Preprint: arXiv:1403.3899v1 [math.NT], 2014.
- D. C. Mayer, Principalization algorithm via class group structure, Preprint: arXiv:1403.3839v1 [math.NT], 2014. J. Théor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
Crossrefs
Programs
-
Magma
SetClassGroupBounds("GRH"); for n := 11608 to 50000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R,E); C, mC := ClassGroup(K); if ([3,3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo
: x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]),NumberField(a[2])); else H := Compositum(NumberField(a[1]),NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if ([3,9,27] eq pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;
Comments