cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A181937 André numbers. Square array A(n,k), n>=2, k>=0, read by antidiagonals upwards, A(n,k) = n-alternating permutations of length k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 16, 1, 1, 1, 1, 1, 9, 61, 1, 1, 1, 1, 1, 4, 19, 272, 1, 1, 1, 1, 1, 1, 14, 99, 1385, 1, 1, 1, 1, 1, 1, 5, 34, 477, 7936, 1, 1, 1, 1, 1, 1, 1, 20, 69, 1513, 50521, 1, 1, 1, 1, 1, 1, 1, 6, 55, 496, 11259, 353792
Offset: 0

Views

Author

Peter Luschny, Apr 03 2012

Keywords

Comments

The André numbers were studied by Désiré André in the case n=2 around 1880. The present author suggests that the numbers A(n,k) be named in honor of André. Already in 1877 Ludwig Seidel gave an efficient algorithm for computing the coefficients of secant and tangent which immediately carries over to the general case. Anthony Mendes and Jeffrey Remmel give exponential generating functions for the general case.

Examples

			n\k [0][1][2][3][4] [5] [6]  [7]   [8]   [9]  [10]    [11]
[1]  1, 1, 1, 1, 1,  1,  1,   1,    1,    1,    1,       1  [A000012]
[2]  1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792  [A000111]
[3]  1, 1, 1, 1, 3,  9, 19,  99,  477, 1513, 11259,  74601  [A178963]
[4]  1, 1, 1, 1, 1,  4, 14,  34,   69,  496,  2896,  11056  [A178964]
[5]  1, 1, 1, 1, 1,  1,  5,  20,   55,  125,   251,   2300  [A181936]
[6]  1, 1, 1, 1, 1,  1,  1,   6,   27,   83,   209,    461  [A250283]
		

References

  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.

Crossrefs

Programs

  • Julia
    # Signed version.
    using Memoize
    @memoize function André(m, n)
        n ≤ 0 && return 1
        r = range(0, stop=n-1, step=m)
        S = sum(binomial(n, k) * André(m, k) for k in r)
        n % m == 0 ? -S : S
    end
    for m in 1:8 println([André(m, n) for n in 0:11]) end # Peter Luschny, Feb 09 2019
  • Maple
    A181937_list := proc(n, len) local E,dim,i,k;  # Seidel's boustrophedon transform
    dim := len-1; E := array(0..dim, 0..dim); E[0,0] := 1;
    for i from 1 to dim do
    if i mod n = 0 then E[i,0] := 0 ;
       for k from i-1 by -1 to 0 do E[k,i-k] := E[k+1,i-k-1] + E[k,i-k-1] od;
    else E[0,i] := 0;
       for k from 1 by 1 to i do E[k,i-k] := E[k-1,i-k+1] + E[k-1,i-k] od;
    fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..dim)] end:
    for n from 2 to 6 do print(A181937_list(n,12)) od;
    # Alternative, with an additional row 0:
    Andre := proc(m, n) option remember; local k; ifelse(n <= 0, 1, ifelse(m = 0, 1,
    -add(binomial(n, k) * Andre(m, k), k = 0..n-1, m))) end:
    T := (n, k) -> abs(Andre(n, k)): seq(lprint(seq(T(n, k), k = 0..11)), n = 0..9);
    # Peter Luschny, Aug 19 2024
  • Mathematica
    dim = 13; e[][0, 0] = 1; e[m][n_ /; 0 <= n <= dim, 0] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] == 0 := e[m][k, n] = e[m][k, n-1] + e[m][k+1, n-1]; e[m_][0, n_ /; 0 <= n <= dim] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] != 0 := e[m][k, n] = e[m][k-1, n] + e[m][k-1, n+1]; e[][, ] = 0; a[, 0] = 1; a[m_, n_] := e[m][n, 0] + e[m][0, n]; Table[a[m-n+1, n], {m, 1, dim-1}, {n, 0, m-1}] // Flatten (* Jean-François Alcover, Jul 23 2013, after Maple *)
    b[r_, u_, o_, t_] := b[r, u, o, t] = If[u + o == 0, 1, If[t == 0, Sum[b[r, u - j, o + j - 1, Mod[t + 1, r]], {j, 1, u}], Sum[b[r, u + j - 1, o - j, Mod[t + 1, r]], {j, 1, o}]]]; A[n_, k_] := b[n, k, 0, 0];
    Table[A[n - k, k], {n, 2, 13}, {k, 0, n - 2}] // Flatten
    (* Jean-François Alcover, Nov 22 2023, after Alois P. Heinz in A250283 *)
    Andre[n_, k_] := Andre[n, k] = If[k <= 0, 1, If[n == 0, 1, -Sum[Binomial[k, j] Andre[n, j], {j, 0, k-1, n}]]];
    Table[Abs[Andre[n, k]], {n, 0, 6}, {k, 0, 11}] // MatrixForm
    (* Peter Luschny, Aug 19 2024 *)
  • Sage
    @cached_function
    def A(m, n):
        if n == 0: return 1
        s = -1 if m.divides(n) else 1
        t = [m*k for k in (0..(n-1)//m)]
        return s*add(binomial(n, k)*A(m, k) for k in t)
    A181937_row = lambda m, n: (-1)^int(is_odd(n//m))*A(m, n)
    for n in (1..6): print([A181937_row(n, k) for k in (0..20)]) # Peter Luschny, Feb 06 2017
    

A178964 E.g.f.: (1+sqrt(2)*sin(x/sqrt(2))*cosh(x/sqrt(2))+sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 14, 34, 69, 496, 2896, 11056, 33661, 349504, 2856944, 14873104, 60376809, 819786496, 8615785216, 56814228736, 288294050521, 4835447317504, 62112775514624, 495812444583424, 3019098162602349, 60283564499562496, 915153344223809536, 8575634961418940416, 60921822444067346581, 1411083019275488149504, 24716980773496372066304
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2010

Keywords

Comments

According to Mendes and Remmel, p. 56, this is the e.g.f. for 4-alternating permutations.

References

  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/

Crossrefs

Number of m-alternating permutations: A000012 (m=1), A000111 (m=2), A178963 (m=3), A178964 (m=4), A181936 (m=5).
Cf. A181937.

Programs

  • Maple
    A178964_list := proc(dim) local E,DIM,n,k;
    DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
    for n from 1 to DIM do
    if n mod 4 = 0 then E[n,0] := 0 ;
       for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
    else E[0,n] := 0;
       for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
    fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
    A178964_list(31); # Peter Luschny, Apr 02 2012
    # Alternatively, using a bivariate exponential generating function:
    A178964 := proc(n) local g, p, q;
    g := (x,z) -> 2*exp(x*z)/(cosh(z)+cos(z));
    p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n);
    q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi:
    (-1)^binomial(n,4)*p(n,q(n,4)) end:
    seq(A178964(i),i=0..30); # Peter Luschny, Jun 06 2012
  • Mathematica
    max = 30; s = Series[Sec[x]*Sech[x]+Tan[x]*(Sqrt[2]+Tanh[x]) /. x -> x/Sqrt[2], {x, 0, max+1}]; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 25 2014 *)
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,
         Sum[b[u - j, o + j - 1, Mod[t + 1, 4]], {j, 1, u}],
         Sum[b[u + j - 1, o - j, Mod[t + 1, 4]], {j, 1, o}]]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *)
  • PARI
    x='x+O('x^30);round(Vec(serlaplace((1+sqrt(2)*sin(x/sqrt(2))*cosh( x/sqrt(2)) + sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))))))
  • Sage
    # Function A(m,n) defined in A181936.
    A178964 = lambda n: (-1)^int(is_odd(n//4))*A(4,n)
    print([A178964(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
    

Formula

a(n) ~ n! * 2^(n/2+1) * (-sqrt(2)*(-1+(-1)^n) - 2*cos(n*Pi/2)*(sinh(Pi/2)-1)/cosh(Pi/2) + (1+(-1)^n)*(1 + sinh(Pi/2))/cosh(Pi/2)) / Pi^(n+1). - Vaclav Kotesovec, Sep 09 2014

A181936 Number of 5-alternating permutations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 20, 55, 125, 251, 2300, 15775, 70500, 249250, 750751, 10006375, 97226875, 601638125, 2886735625, 11593285251, 202808749375, 2550175096250, 20163891580625, 122209131374375, 613498040952501, 13287626090593750, 205055676105734375
Offset: 0

Views

Author

Peter Luschny, Apr 03 2012

Keywords

Comments

For an integer n>0, a permutation s = s_1...s_k is a n-alternating permutation if it has the property that s_i < s_{i+1} if and only if n divides i.

References

  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.

Crossrefs

Number of m-alternating permutations: A000012 (m=1), A000111 (m=2), A178963 (m=3), A178964 (m=4), this sequence (m=5), A250283 (m=6), A250284 (m=7), A250285 (m=8), A250286 (m=9), A250287 (m=10).
Row n=5 of A181937.

Programs

  • Maple
    A181936_list := proc(dim) local E,DIM,n,k;
    DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
    for n from 1 to DIM do
    if n mod 5 = 0 then E[n,0] := 0 ;
       for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
    else E[0,n] := 0;
       for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
    fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
    A181936_list(28);
    # Alternatively, using an exponential generating function:
    A181936_list := proc(n) local H,F,i; H := (r,s) -> hypergeom(r,s/5,-(t/5)^5);
    F := t -> 1+(t^5*H([1],[6,7,8,9,10])+5*t^4*H([],[6,7,8,9])+20*t^3*H([],[4,6,7,8])+60*t^2*H([],[3,4,6,7])+120*t^1*H([],[2,3,4,6]))/(120*H([],[2,3,4,1])); seq(i!*coeff(series(F(t),t,n+1),t,i),i=0..n-1) end:
  • Mathematica
    dim = 27; e[0, 0] = 1; e[n_ /; Mod[n, 5] == 0 && 0 <= n <= dim, 0] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] == 0 := e[k, n] = e[k, n-1] + e[k+1, n-1]; e[0, n_ /; Mod[n, 5] == 0 && 0 <= n <= dim] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] != 0 := e[k, n] = e[k-1, n] + e[k-1, n+1]; e[, ] = 0; a[0] = 1; a[n_] := e[n, 0] + e[0, n]; Table[a[n], {n, 0, dim}] (* Jean-François Alcover, Jun 27 2013, translated and adapted from Maple *)
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,
         Sum[b[u - j, o + j - 1, Mod[t + 1, 5]], {j, 1, u}],
         Sum[b[u + j - 1, o - j, Mod[t + 1, 5]], {j, 1, o}]]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *)
    nmax = 30; CoefficientList[Series[1 + Sum[(x^(5 - k) * HypergeometricPFQ[{1}, {6/5 - k/5, 7/5 - k/5, 8/5 - k/5, 9/5 - k/5, 2 - k/5}, -x^5/3125])/(5 - k)!, {k, 0, 4}] / HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, -x^5/3125], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)
  • Sage
    @cached_function
    def A(m,n):
        if n == 0: return 1
        s = -1 if m.divides(n) else 1
        t = [m*k for k in (0..(n-1)//m)]
        return s*add(binomial(n,k)*A(m,k) for k in t)
    A181936 = lambda n: (-1)^int(is_odd(n//5))*A(5,n)
    print([A181936(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
Showing 1-3 of 3 results.